Journal of Shanghai University(Natural Science Edition) ›› 2021, Vol. 27 ›› Issue (3): 411-443.doi: 10.12066/j.issn.1007-2861.2300
• Invited Review • Previous Articles Next Articles
ZHU Mingyuan1, LIU Wenbo1, LIU Yang2, QI Cai2, LI Ying1, LI Wenxian1, ZHANG Jiujun2()
Received:
2021-03-30
Online:
2021-06-30
Published:
2021-06-27
Contact:
ZHANG Jiujun
E-mail:jiujun.zhang@i.shu.edu.cn
CLC Number:
ZHU Mingyuan, LIU Wenbo, LIU Yang, QI Cai, LI Ying, LI Wenxian, ZHANG Jiujun. Key scientific and technological principles of hydrogen energy and fuel cells: challenges and prospects[J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(3): 411-443.
[1] | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019,34(4):469-477. |
Shao Z G, Yi B L. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of the Chinese Academy of Sciences, 2019,34(4):469-477. | |
[2] | Takeichi N, Senoh H, Yokota T, et al. "Hybrid hydrogen storage vessel", a novel high-pressure hydrogen storage vessel combined with hydrogen storage material[J]. International Journal of Hydrogen Energy, 2003,28(9):1121-1129. |
[3] |
Tie D, Huang S, Wang J, et al. Hybrid energy storage devices: advanced electrode materials and matching principles[J]. Energy Storage Materials, 2019,21(19):22-40.
doi: 10.1016/j.ensm.2018.12.018 |
[4] | 衣宝廉. 燃料电池: 原理$\cdot$技术$\cdot$应用 [M]. 北京: 化学工业出版社, 2003. |
Yi B L. Fuel cell: principle, technology and application [M]. Beijing: Chemical Industry Press, 2003. | |
[5] |
Cano Z P, Banham D, Ye S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018,3(4):279-289.
doi: 10.1038/s41560-018-0108-1 |
[6] | 前瞻研究院. 氢能源行业产业链分析下游燃料电池起飞在即[J]. 电器工业, 2018(11):59-60. |
Foresight Institute. Hydrogen energy industry chain analysis: downstream fuel cells take off soon[J]. China Electrical Equipment Industry, 2018(11):59-60. | |
[7] | 鄢丽娜. 氢源结构呈"以煤为主"特点 [N]. 中国煤炭报, 2019-09-17(3). |
Yan L N. The structure of hydrogen source shows the characteristics of "mainly coal"[N]. China Coal Daily, 2019-09-17(3). | |
[8] | 宁翔. 我国工业制氢技术路线研究及展望[J]. 能源研究与利用, 2020 (1):52-55. |
Ning X. Research and prospect of China's industrial hydrogen production technology route[J]. Energy Research & Utilization, 2020 (1):52-55. | |
[9] |
Khan M A, Zhao H, Zou W, et al. Recent progresses in electrocatalysts for water electrolysis[J]. Electrochemical Energy Reviews, 2018,1(4):483-530.
doi: 10.1007/s41918-018-0014-z |
[10] | Dau H, Limberg C, Reier T, et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J]. Chem Cat Chem, 2010,2(7):724-761. |
[11] |
Duan S, Han G, Su Y, et al. Magnetic Co@g-C$_3$N$_4$ core-shells on rGO sheets for momentum transfer with catalytic activity toward continuous-flow hydrogen generation[J]. Langmuir, 2016,32(25):6272-6281.
doi: 10.1021/acs.langmuir.6b01248 |
[12] |
Zhong D Y, Zhang G Y, Liu S, et al. Lithium storage in polymerized carbon nitride nanobells[J]. Applied Physics Letters, 2001,79(21):3500-3502.
doi: 10.1063/1.1419034 |
[13] | 国家能源局. 2018年可再生能源并网运行情况介绍 [EB/OL]. [2019-01-28]. http://www.nea.gov.cn/2019-01/28/c_137780519.htm. |
[14] | 中国水电. 中国水电发展的现状与展望 [EB/OL]. [2019-11-06]. http://www.hydropower.org.cn/showNewsDetail.asp?nsId=26317. |
[15] | 中国电力企业联合会规划发展部. 2016—2017 年度全国电力供需形势分析预测报告[J]. 电器工业, 2017(2):11-16. |
China Electricity Council Planning and Development Department. 2016—2017 national electricity supply and demand situation analysis and forecast report[J]. China Electrical Equipment Industry, 2017(2):11-16. | |
[16] | 中国政府网. 新疆连续 4 个月弃风率低于 20% "红线" [EB/OL]. [2018-11-29]. http://www.gov.cn/xinwen/2018-11/29/content_5344457.htm. |
[17] | 刘坚, 钟财富. 我国氢能发展现状与前景展望[J]. 中国能源, 2019,41(2):32-36. |
Liu J, Zhong C F. China hydrogen energy development status and prospects[J]. Energy of China, 2019,41(2):32-36. | |
[18] | 第一财经网. 去年弃核电量致企业损失近 200 亿元, 核企呼吁要保障核电消纳 [EB/OL]. [2017-03-11]. https://www.yicai.com/news/5244152.html. |
[19] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.
pmid: 12635268 |
[20] |
Greiner C J, Korpås M, Holen A T. A Norwegian case study on the production of hydrogen from wind power[J]. International Journal of Hydrogen Energy, 2007,32:1500-1507.
doi: 10.1016/j.ijhydene.2006.10.030 |
[21] |
Zou G, Jia X, Huang Z, et al. Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries[J]. Electrochimica Acta, 2016,196:413-421.
doi: 10.1016/j.electacta.2016.03.016 |
[22] |
Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008,18(41):4893-4908.
doi: 10.1039/b800274f |
[23] |
Ley M B, Meggouh M, Moury R, et al. Development of hydrogen storage tank systems based on complex metal hydrides[J]. Materials (Basel), 2015,8(9):5891-5921.
doi: 10.3390/ma8095280 |
[24] | Von Helmolt R, Eberle U. Compressed and liquid hydrogen for fuel cell vehicles[M]// Kreysa G, Ota K I, Savinell K F. Encyclopedia of applied electrochemistry. New York: Springer, 2014: 245-253. |
[25] | 吉力强, 赵英朋, 王凡, 等. 氢能技术现状及其在储能发电领域的应用[J]. 金属功能材料, 2019,26(6):23-31. |
Ji L Q, Zhao Y P, Wang F, et al. Current situation of hydrogen energy technology and hydrogen energy storage applied in power generation[J]. Metallic Functional Materials, 2019,26(6):23-31. | |
[26] | 单彤文, 宋鹏飞, 李又武, 等. 制氢、储运和加注全产业链氢气成本分析[J]. 天然气化工, 2019,45:85-91. |
Shan T W, Song P F, Li Y W, et al. Cost analysis of hydrogen from the perspective of the whole industrial chain of production, storage, transportation and refueling[J]. Natural Gas Chemical Industry, 2019,45:85-91. | |
[27] |
Taljegard M, Brynolf S, Grahn M, et al. Cost-effective choices of marine fuels in a carbon-constrained world: results from a global energy model[J]. Environmental Science & Technology, 2014,48(21):12986-12993.
doi: 10.1021/es5018575 |
[28] | 郭秀盈, 李先明, 许壮, 等. 可再生能源电解制氢成本分析[J]. 储能科学与技术, 2020,9(3):688-695. |
Guo X Y, Li X M, Xu Z, et al. Cost analysis of hydrogen production by electrolysis of renewable energy[J]. Energy Storage Science and Technology, 2020,9(3):688-695. | |
[29] |
Lamb K E, Dolan M D, Kennedy D F. Ammonia for hydrogen storage: a review of catalytic ammonia decomposition and hydrogen separation and purification[J]. International Journal of Hydrogen Energy, 2019,44(7):3580-3593.
doi: 10.1016/j.ijhydene.2018.12.024 |
[30] | 孙大林. 车载储氢技术的发展与挑战[J]. 自然杂志, 2011,33(1):13-18. |
Sun D L. Development and challenges of on-board hydrogen storage technology[J]. Chinese Journal of Nature, 2011,33(1):13-18. | |
[31] | 张志芸, 张国强, 刘艳秋, 等. 车载储氢技术研究现状及发展方向[J]. 油气储运, 2018,37(11):1207-1212. |
Zhang Z Y, Zhang G Q, Liu Y Q, et al. Research status and development direction of on-board hydrogen storage technologies[J]. Oil & Gas Storage and Transportation, 2018,37(11):1207-1212. | |
[32] | 徐丽, 马光, 盛鹏, 等. 储氢技术综述及在氢储能中的应用展望[J]. 智能电网, 2016,4(2):166-171. |
Xu L, Ma G, Sheng P, et al. Overview of hydrogen storage technologies and their application prospects in hydrogen-based energy storage[J]. Smart Grid, 2016,4(2):166-171. | |
[33] | 张媛媛, 赵静, 鲁锡兰, 等. 有机液体储氢材料的研究进展[J]. 化工进展, 2016,35:2869-2874. |
Zhang Y Y, Zhao J, Lu X L, et al. Progress in liquid organic hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2016,35:2869-2874. | |
[34] | Sultan O, Show H. Study of automotive storage of hydrogen using recyclable liquid chemical carriers [EB/OL]. [2021-01-20]. https://www.osti.gov/biblio/500065. |
[35] |
Luo W, Campbell P G, Zakharov L N, et al. A single-component liquid-phase hydrogen storage material[J]. Journal of the American Chemical Society, 2011,133(48):19326-19329.
doi: 10.1021/ja208834v |
[36] |
Chen H, Yang H, Omotoso O, et al. Contribution of hydrogen spillover to the hydrogenation of naphthalene over diluted Pt/RHO catalysts[J]. Applied Catalysis A: General, 2009,358(2):103-109.
doi: 10.1016/j.apcata.2008.12.045 |
[37] |
Zhang D, Zhao J, Zhang Y, et al. Catalytic hydrogenation of phenanthrene over NiMo/Al$_2$O$_3$ catalysts as hydrogen storage intermediate[J]. International Journal of Hydrogen Energy, 2016,41(27):11675-11681.
doi: 10.1016/j.ijhydene.2015.11.173 |
[38] |
Mehranfar A, Izadyar M, Esmaeili A A. Hydrogen storage by N-ethylcarbazol as a new liquid organic hydrogen carrier: a DFT study on the mechanism[J]. International Journal of Hydrogen Energy, 2015,40(17):5797-5806.
doi: 10.1016/j.ijhydene.2015.03.011 |
[39] |
Wulf C, Zapp P. Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers[J]. International Journal of Hydrogen Energy, 2018,43(26):11884-11895.
doi: 10.1016/j.ijhydene.2018.01.198 |
[40] | 高金良, 袁泽明, 尚宏伟, 等. 氢储存技术及其储能应用研究进展[J]. 金属功能材料, 2016,23:1-11. |
Gao J L, Yuan Z M, Shang H W, et al. Research progress on storage technology and stored energy application of hydrogen[J]. Metallic Functional Materials, 2016,23:1-11. | |
[41] | 第一财经网. 市场机构: 全国已建成加氢站 61 座, 广东上海领跑[EB/OL]. [2020-01-06]. https://www.yicai.com/news/100458136.html. |
[42] | 王周. 我国加氢站建设的发展前景探讨[J]. 城市燃气, 2015,488:28-32. |
Wang Z. Discussion on the development prospect of hydrogen station in China[J]. Urban Gas, 2015,488:28-32. | |
[43] | Evtank. 国内建成运营加氢站 23 座, 预计 2020 年达 100 座 [EB/OL]. [2019-03-03]. http://www.itdcw.com/news/focus/03031009102019.html. |
[44] | 赵月晶, 何广利, 缪平, 等. 35 MPa/70 MPa加氢机加注性能综合评价研究[J]. 储能科学与技术, 2020,9(3):702-706. |
Zhao Y J, He G L, Miao P, et al. Study on comprehensive evaluation of 35 MPa/70 MPa hydrogen dispenser refueling performance[J]. Energy Storage Science and Technology, 2020,9(3):702-706. | |
[45] | 何广利, 杨康, 董文平, 等. 基于国产三型瓶的氢气加注技术开发[J]. 储能科学与技术, 2020,9(3):696-701. |
He G L, Yang K, Dong W P, et al. Filling technology development for type Ⅲ hydrogen tank[J]. Energy Storage Science and Technology, 2020,9(3):696-701. | |
[46] | 辛妍. 国外燃料电池汽车发展: 性能、优势、挑战及应对[J]. 新经济导刊, 2015(8):38-43. |
Xin Y. The development of foreign fuel cell vehicles: performance, advantages, challenges and countermeasures[J]. New Economy Weekly, 2015(8):38-43. | |
[47] |
Suzuki T. Fuel cell stack technology of Toyota[J]. ECS Transactions, 2016,75:423-434.
doi: 10.1149/07514.0423ecst |
[48] | 许德超, 赵子亮, 赵洪辉, 等. 国内燃料电池电堆技术进展综述[J]. 汽车文摘, 2020(1):8-13. |
Xu D C, Zhao Z L, Zhao H H, et al. Progress review of fuel cell stack technologies in China[J]. Automotive Digest, 2020(1):8-13. | |
[49] |
Tian N, Lu B A, Yang X D, et al. Rational design and synjournal of low-temperature fuel cell electrocatalysts[J]. Electrochemical Energy Reviews, 2018,1(1):54-83.
doi: 10.1007/s41918-018-0004-1 |
[50] |
Wang R, Wang H, Luo F, et al. Core-shell-structured low-platinum electrocatalysts for fuel cell applications[J]. Electrochemical Energy Reviews, 2018,1(3):324-387.
doi: 10.1007/s41918-018-0013-0 |
[51] | 侯明, 邵志刚, 俞红梅, 等. 2019 年氢燃料电池研发热点回眸[J]. 科技导报, 2020,38(1):137-150. |
Hou M, Shao Z G, Yu H M, et al. Looking back on the research and development hotspots of hydrogen fuel cells in 2019[J]. Science & Technology Review, 2020,38(1):137-150. | |
[52] |
Wang X X, Hwang S, Pan Y T, et al. Ordered Pt$_3$Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction[J]. Nano Letters, 2018,18(7):4163-4171.
doi: 10.1021/acs.nanolett.8b00978 |
[53] |
Sui P C, Zhu X, Djilali N. Modeling of PEM fuel cell catalyst layers: status and outlook[J]. Electrochemical Energy Reviews, 2019,2(3):428-466.
doi: 10.1007/s41918-019-00043-5 |
[54] | Hou J, Yang M, Ke C, et al. Platinum-group-metal catalysts for proton exchange membrane fuel cells: from catalyst design to electrode structure optimization[J]. Energy Chem, 2020,2(1):100023-100062. |
[55] |
Cao L, Yi B, Jiang S, et al. Preparation of monodispersed ultra-small PtCu alloy with remarkable electrocatalytic performance[J]. Scientia Sinica Chimica, 2017,47(5):683-691.
doi: 10.1360/N032017-00005 |
[56] |
Banham D, Ye S. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective[J]. ACS Energy Letters, 2017,2(3):629-638.
doi: 10.1021/acsenergylett.6b00644 |
[57] | 刘义鹤, 江洪. 燃料电池质子交换膜技术发展现状[J]. 新材料产业, 2018,5:27-30. |
Liu Y H, Jiang H. Development status of fuel cell proton exchange membrane technology[J]. Advanced Materials Industry, 2018,5:27-30. | |
[58] | 刘以成, 徐国祥, 李俊, 等. 基于 TRIZ 理论的质子交换膜燃料电池膜材料研究进展分析[J]. 化工进展, 2014,33(12):3412-3417. |
Liu Y C, Xu G X, Li J, et al. Analysis of progress of proton exchange membrane fuel cell membrane materials based on TRIZ theory[J]. Chemical Industry and Engineering Progress, 2014,33(12):3412-3417. | |
[59] |
Nolte R, Ledjeff K, Bauer M, et al. Partially sulfonated poly (arylene ether sulfone): a versatile proton conducting membrane material for modern energy conversion technologies[J]. Journal of Membrane Science, 1993,83(2):211-220.
doi: 10.1016/0376-7388(93)85268-2 |
[60] | 侯明, 衣宝廉. 燃料电池的关键技术[J]. 科技导报, 2016,34(6):52-61. |
Hou M, Yi B L. The key technology of fuel cell[J]. Science & Technology Review, 2016,34(6):52-61. | |
[61] |
Zhao D, Yi B L, Zhang H M, et al. Cesium substituted 12-tungstophosphoric (Cs$_x$H$_{3-x}$PW$_{12}$O$_{40}$) loaded on ceria-degradation mitigation in polymer electrolyte membranes[J]. Journal of Power Sources, 2009,190(2):301-306.
doi: 10.1016/j.jpowsour.2008.12.133 |
[62] | Yao Y, Liu J, Liu W, et al. Vitamin E assisted polymer electrolyte fuel cells[J]. Energy & Environmental Science, 2014,7(10):3362-3370. |
[63] | 张永明, 唐军柯, 袁望章. 燃料电池全氟磺酸质子交换膜研究进展[J]. 膜科学与技术, 2011,31(3):76-85. |
Zhang Y M, Tang J K, Yuan W Z. Research progress of perfluorosulfonic acid proton exchange membrane for fuel cell[J]. Membrane Science and Technology, 2011,31(3):76-85. | |
[64] |
Chen L, Lin R, Tang S, et al. Structural design of gas diffusion layer for proton exchange membrane fuel cell at varying humidification[J]. Journal of Power Sources, 2020,467:228355.
doi: 10.1016/j.jpowsour.2020.228355 |
[65] |
Park J, Oh H, Ha T, et al. A review of the gas diffusion layer in proton exchange membrane fuel cells: durability and degradation[J]. Applied Energy, 2015,155:866-880.
doi: 10.1016/j.apenergy.2015.06.068 |
[66] | Sando Y. Research and development of fuel cell vehicles at Honda[J]. ECS Transactions, 2009,25(1):211-224. |
[67] | 鲍鹏龙, 章道彪, 许思传, 等. 燃料电池车用空气压缩机发展现状及趋势[J]. 电源技术, 2016,40(8):1731-1734. |
Bao P L, Zhang D B, Xu S C, et al. Development status and trend of air compressor in fuel cells vehicle[J]. Chinese Journal of Power Sources, 2016,40(8):1731-1734. | |
[68] | 李超, 刘振全, 王君. 燃料电池用无油润滑涡旋压缩机研究[J]. 润滑与密封, 2008,33(6):74-77. |
Li C, Liu Z Q, Wang J. Research on oilless scroll compressor for fuel cell[J]. Lubrication Engineering, 2008,33(6):74-77. | |
[69] | 张毅. 燃料电池车用空气压缩机的发展现状及趋势分析[J]. 内燃机与配件, 2019(2):201-202. |
Zhang Y. Development status and trend analysis of air compressors for fuel cell vehicles[J]. Internal Combustion Engine & Parts, 2019(2):201-202. | |
[70] | 黄友艳, 秦国良. 燃料电池用离心压缩机设计与数值模拟[J]. 风机技术, 2012(1):30-33. |
Huang Y Y, Qin G L. Design and numerical simulation of centrifugal compressor for fuel cell[J]. Chinese Journal of Turbomachinery, 2012(1):30-33. | |
[71] | 郝冬, 朱凯, 张妍懿, 等. 燃料电池电动汽车专用空压机技术简析[J]. 汽车零部件, 2019(8):96-100. |
Hao D, Zhu K, Zhang Y Y, et al. Brief introduction of technology of air compressor for fuel cell vehicles[J]. Automobile Parts, 2019(8):96-100. | |
[72] |
Migliardini F, Capasso C, Corbo P. Optimization of hydrogen feeding procedure in PEM fuel cell systems for transportation[J]. International Journal of Hydrogen Energy, 2014,39(36):21746-21752.
doi: 10.1016/j.ijhydene.2014.08.070 |
[73] |
Mohammed H, Al-Othman A, Nancarrow P, et al. Direct hydrocarbon fuel cells: a promising technology for improving energy efficiency[J]. Energy, 2019,172:207-219.
doi: 10.1016/j.energy.2019.01.105 |
[74] | 张奥, 杨军, 吴桐, 等. 燃料电池车载氢气供给系统概述[J]. 船电技术, 2019,39(9):53-56. |
Zhang A, Yang J, Wu T, et al. Application of hydrogen supply system for fuel cell vehicles[J]. Marine Electric & Electronic Engineering, 2019,39(9):53-56. | |
[75] | 上海情报服务平台. 燃料电池下游应用分析: 固定式领域相对成熟, 交通领域市场起飞在即 [EB/OL]. [2020-02-12]. http://www.china-nengyuan.com/exhibition/exhibition_news_151689.html. |
[76] | Hart D, Lehner F, Jones S, et al. The fuel cell industry review 2018[M]. London: E4tech, 2019. |
[77] | 中国氢能源网. Intelligent Energy斩获印度大订单 [EB/OL]. [2019-10-16]. . |
[78] | 弗尔塞官网. 与上海移动国内首创燃料电池备用电源产品租赁服务商业模式 [EB/OL]. http://www.foresight-energy.cn/about/?3.html. |
[79] | 高工氢电网. 为 5G 基站提供氢燃料发电系统, 高成绿能有何硬实力 [EB/OL]. [2020-04-20]. https://www.gg-fc.com/art-39969.html. |
[80] | 中汽协会行业信息部. 2019 年汽车工业经济运行情况 [EB/OL]. [2020-01-13]. http://www.caam.org.cn/chn/4/cate_39/con_5228367.html. |
[81] | 东方财富网. 氢能与燃料电池产业链现状及发展前景 [EB/OL]. [2019-05-13]. https://baijiahao.baidu.com/s?id=1633399188785165470&wfr=spider&for=pc. |
[82] | 张立国, 宁国宝. 国内电动汽车发展综述[J]. 农业装备与车辆工程, 2006,184:3-6. |
Zhang L G, Ning G B. Overview of domestic electric vehicle development[J]. Agricultural Equipment & Vehicle Engineering, 2006,184:3-6. | |
[83] | 中国质量报. 上汽大通又一款全新燃料电池车试装下线 [EB/OL]. [2019-03-06]. http://epaper.cqn.com.cn/article/474636.html. |
[84] | 明海, 邱景义, 祝夏雨, 等. 军用便携式燃料电池技术发展[J]. 电池, 2017,47(6):362-365. |
Ming H, Qiu J Y, Zhu X Y, et al. Development of military portable fuel cell technologies[J]. Battery Bimonthly, 2017,47(6):362-365. | |
[85] |
Renau J, Sánchez F, Lozano A, et al. Analysis of the performance of a passive hybrid powerplant to power a lightweight unmanned aerial vehicle for a high altitude mission[J]. Journal of Power Sources, 2017,356:124-132.
doi: 10.1016/j.jpowsour.2017.04.090 |
[86] |
Li X, Blinn K, Chen D, et al. In situ and surface-enhanced Raman spectroscopy study of electrode materials in solid oxide fuel cells[J]. Electrochemical Energy Reviews, 2018,1(3):433-459.
doi: 10.1007/s41918-018-0017-9 |
[87] | 余意. 频繁启停对质子交换膜燃料电池堆性能的影响[J]. 电池, 2015,45(2):74-77. |
Yu Y. Performance decay of PEMFC stack after startup-shutdown cycles[J]. Battery Bimonthly, 2015,45(2):74-77. | |
[88] | 朱琴君, 祝俊宗. 国内液氢加氢站的发展与前景[J]. 煤气与热力, 2020,40(7):B15-B20. |
Zhu Q J, Zhu J Z. Development and prospects of domestic liquid hydrogen refueling stations[J]. Gas & Heat, 2020,40(7):B15-B20. | |
[89] | 孔垂颖, 刘双虎, 门峰. 我国加氢站行业发展驱动力分析[J]. 汽车工业研究, 2020(2):20-23. |
Kong C Y, Liu S H, Men F. Analysis of the driving forces for the development of China's hydrogen refueling station industry[J]. Auto Industry Research, 2020(2):20-23. | |
[90] | 马秋玉, 赵子亮, 赵洪辉, 等. 燃料电池行业标准现状综述[J]. 汽车文摘, 2020(1):15-17. |
Ma Q Y, Zhao Z L, Zhao H H, et al. Overview on the present situation of fuel cell industry standards[J]. Automotive Digest, 2020(1):15-17. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||