[1] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009. [2] Karypis G, Kumar V. Parallel multilevel k-way partitioning scheme for irregular graphs [C]// Proceedings of the 1996 ACM/IEEE conference on Supercomputing. 1996: 35. [3] Lasalle D, Karypis G. Multi-threaded graph partitioning [C]// IEEE 27th International Symposium on Parallel and Distributed Processing. 2013: 225-236. [4] Devine K D, Boman E G, Heaphy R T, et al. Parallel hypergraph partitioning for scientiflc computing [C]// Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. 2006: 10. [5] Chevalier C, Pellegrini F. PT-Scotch: a tool for efficient parallel graph ordering [J]. Parallel Computing, 2008, 34(6/7/8): 318-331. [6] 张娟, 陆林生. 基于多区域多代码问题的自动分块算法[J]. 计算机工程, 2010, 36(9): 73-76. [7] 李桂波, 杨国伟. 基于多块结构网格的并行计算及负载平衡研究[J]. 宇航学报, 2011, 32(6): 1224-1230. [8] Berger, Bokhari. A partitioning strategy for nonuniform problems on multiprocessors [J]. IEEE Transactions on Computers, 1987, 36(5): 570-580. [9] Farhat C, Lesoinne M. Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics [J]. International Journal for Numerical Methods in Engineering, 1993, 36(5): 745-764. [10] Lockard D, Choudhari M. The variation of slat noise with Mach and Reynolds numbers [C]// 17th AIAA/CEAS Aeroacoustics Conference. 2011: 2910. [11] 王良军. 基于国产神威超级计算机的格子Boltzmann方法及应用研究[D]. 上海: 上海大学, 2019. |