数字影视技术

基于分区域双边滤波的谷粒噪声修复算法

展开
  • 1.上海大学 上海电影学院, 上海 200072
    2.上海大学 上海电影特效工程技术研究中心, 上海 200072

收稿日期: 2019-02-20

  网络出版日期: 2020-11-06

基金资助

国家自然科学基金资助项目(61402278);上海市自然科学基金资助项目(14ZR1415800);上海市科委工程技术研究中心建设专项资助项目(16dz2251300);上海市科委科技攻关资助项目(16511101302)

Grain noise restoration algorithm based on sub-regional bilateral filter

Expand
  • 1. Shanghai Film Academy, Shanghai University, Shanghai 200072, China
    2. Shanghai Film Special Effects Engineering Technology Research Center, Shanghai University, Shanghai 200072, China

Received date: 2019-02-20

  Online published: 2020-11-06

摘要

作为胶片电影中最常见的谷粒噪声, 其对应的修复算法虽然很多但却存在过度平滑、复杂度高等诸多缺陷. 因此运用 RGB 通道的相关性, 提出一种基于分区域双边滤波的噪声修复算法, 目标是去除胶片电影中常见的谷粒噪声, 为后续斑点、划痕、稳像、闪烁等修复工作提供质量保证. 测试结果表明: 运用本算法去噪后的图像不仅能满足人眼的视觉要求, 而且其峰值信噪比(peak signal to noise ratio, PSNR)值和结构相似性(structural similarity, SSIM)值明显提高, 运行时间也几乎缩短为原来的一半, 这不仅会提高旧电影的商业价值, 而且对挽救国内外大量史实资料具有重要意义.

本文引用格式

徐敏, 丁友东, 董荪, 张倩倩, 李傅媛, 陈钰 . 基于分区域双边滤波的谷粒噪声修复算法[J]. 上海大学学报(自然科学版), 2020 , 26(5) : 693 -701 . DOI: 10.12066/j.issn.1007-2861.2120

Abstract

Grain noise in film films and their corresponding repair algorithms are numerous, but they usually have defects, such as smooth transition and high complexity. Combined with the correlation of RGB channels, a noise restoration algorithm based on a sub-regional bilateral filter was developed in this study to eliminate common grain noise in film films and ensure quality assurance for subsequent repair work, such as spots, scratches, image stabilisation, and scintillation. The test results showed that the de-noised image captured using the proposed algorithm not only satisfied the visual requirements of the human eye but also significantly improved the peak signal-to-noise ratio and structural similarity index measure values and decreased the running time to almost half of the original time. These benefits will not only improve the commercial value of old films but will also save a large amount of historical data.

参考文献

[1] 芦碧波, 王乐蓉. 全变分引导的双边滤波图像去噪方法[J]. 光学技术, 2018,44(2):194-200.
[2] 陈婷婷, 沈民奋, 杨金耀. 一种复合各向异性扩散的图像去噪算法[J]. 数据采集与处理, 2014,29(5):757-763.
[3] 马晓双, 吴鹏海, 刘诗雨, 等. 结合相似块匹配及线性最小均方误差滤波器的全极化雷达影像去噪[J]. 遥感学报, 2018,22(4):40-50.
[4] 崔金鸽, 陈炳权, 徐庆. 基于Dual-Tree CWT 和自适应双边滤波器的图像去噪算法[J]. 计算机工程与应用, 2018(1):223-228.
[5] 张丽红, 焦韶波. 非局部均值的彩色图像去噪方法改进[J]. 计算机技术与发展, 2017,27(9):39-42.
[6] Zhang R. Noise removal in color images on image gradient[J]. Microcomputer Information, 2010,26(35):17-19.
[7] 兰小艳, 陈莉, 贾建, 等. 基于小波和 PCA 的自适应颜色空间彩色图像去噪[J]. 计算机应用研究, 2018,35(3):934-939.
[8] Sadhar S I, Rajagopalan A N. Image estimation in film-grain noise[J]. IEEE Signal Processing Letters, 2005,12(3):238-241.
[9] 郑英娟, 张有会, 王志巍, 等. 基于八方向 Sobel 算子的边缘检测算法[J]. 计算机科学, 2013,40:354-356.
[10] 蔡文涛. 基于相关性的自适应图像去噪算法[J]. 电子测试, 2013(2):106-108.
[11] 王松林. 一种改进的自适应加权中值去噪算法的研究[D]. 武汉: 武汉科技大学, 2016.
[12] 徐进. 电影胶片数字修复关键技术研究[D]. 上海: 上海交通大学, 2009.
文章导航

/