上海大学学报(自然科学版) ›› 2016, Vol. 22 ›› Issue (1): 36-44.doi: 10.3969/j.issn.1007-2861.2015.04.021

• 大数据 • 上一篇    下一篇

一种上下文感知的E-commerce评级大数据赋权方法

齐连永1,2, 窦万春1, 周毓明1   

  1. 1. 南京大学 计算机科学与技术系, 南京 210093; 2. 曲阜师范大学 信息科学与工程学院, 山东 日照 276826
  • 收稿日期:2015-11-30 出版日期:2016-02-29 发布日期:2016-02-29
  • 通讯作者: 窦万春(1971—),男,教授,博士生导师,研究方向为服务计算、大数据、云计算.E-mail: douwc@nju.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(61402258); 江苏省重点研发计划资助项目(BE2015154); 国家电网公司科技资助项目; 中国博士后科学基金资助项目(2015M571739); 江苏省自然科学基金资助项目(BK20130014)

A context-aware weighting approach for big data of quality ratings in E-commerce

QI Lianyong1,2, DOU Wanchun1, ZHOU Yuming1   

  1. 1. Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China; 2. School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, Shandong, China
  • Received:2015-11-30 Online:2016-02-29 Published:2016-02-29

摘要:

电子商务(E-commerce)的飞速发展, 产生了大量针对商品的在线评级数据, 通过分析评级数据, 用户可以对商品的质量进行评估. 然而, 评级数据的海量性和差异性使得用户难以快速而准确地评估商品的质量. 鉴于此, 提出一种基于E-commerce 评级的上下文感知赋权方法(context-aware weighting approach, CWA), 以选出少数“重要”的评级数据并抛弃大多数“不重要”的评级数据, 从而确保商品质量评估的快速性和准确性. 最后, 通过一组实验验证了CWA 的有效性.

关键词: E-commerce, 大数据, 赋权, 上下文, 用户评级

Abstract:

With the fast development of E-commerce, large amounts of quality rating data for commodities are generated online. By analyzing the rating data, users can evaluate the commodities’quality. However, due to the massiveness and diversity of the rating data, it is a challenge for users to evaluate the commodity quality quickly and accurately. To this end, a context-aware weighting approach for E-commerce ratings, context-aware weighting approach (CWA) is proposed. With CWA, a few important rating data are selected and most unimportant data dropped. Thus the commodity quality can be evaluated quickly and accurately. A series of experiments validate effectiveness of the proposed CWA.

Key words: big data, context, E-commerce, user rating, weighting