上海大学学报(自然科学版) ›› 2009, Vol. 15 ›› Issue (5): 496-500.

• 数理化科学 • 上一篇    下一篇

有限群的正规嵌入子群

  

  1. 1.上海大学 理学院,上海 200444; 2.连云港师范高等专科学校 数学系,江苏 连云港 222006
  • 收稿日期:2008-05-12 出版日期:2009-10-30 发布日期:2009-10-30
  • 通讯作者: 郭鹏飞(1972~),男,副教授,博士,研究方向为有限群. E-mail:guopf999@163.com
  • 基金资助:

    国家自然科学基金资助项目(10771132);江苏省高校“青蓝工程”资助项目

Normally Embedded Subgroups of Finite Groups

  1. 1.College of Sciences, Shanghai University, Shanghai 200444, China; 2.Department of Mathematics, Lianyungang Teachers College, Lianyungang 222006, Jiangsu, China
  • Received:2008-05-12 Online:2009-10-30 Published:2009-10-30

摘要:

G的子群H称为G的正规嵌入子群, 如果对于|H|的每个素因子p, 存在G的一个正规子群K,使得H的一个Sylow p-子群也是K的一个Sylow p-子群. 假设对于G的每个非循环Sylow子群P有一个子群D,使得1<|D|<|P|,且P的所有阶为|D|和2|D|(若P是非交换2-群且|P:D|>2)的子群HG的正规嵌入子群, 得到Gp-幂零群以及超可解群的一些充分条件, 部分结果被推广到群系. 

关键词: 正规嵌入子群;p-正规嵌入子群;p-幂零群;超可解群

Abstract:

A subgroup H of a finite group G is said to be normally embedded in G if, for every prime p dividing the order of H, there exists a normal subgroup K of G such that a Sylow p- subgroup of H is also a Sylow p- subgroup of K。 This paper assumes that every non-cyclic Sylow subgroup P of G has a subgroup D such that 1<|D|<|P| and all subgroups H of P with order |H|=|D| and with 2|D|(if P is a non-abelian 2-group and |P:D|>2) are normally embedded in G, and some sufficient conditions are obtained on G to be p-nilpotent groups and supersolvable groups. Moreover, some of them are extended to formations.

Key words: normally embedded subgroups; p- normally embedded subgroups; p-nilpotent groups; supersolvable groups

中图分类号: