上海大学学报(自然科学版) ›› 2024, Vol. 30 ›› Issue (6): 1067-1079.doi: 10.12066/j.issn.1007-2861.2633

• • 上一篇    下一篇

基于线性回归和神经网络的期权对冲方法: 以 SSE 50 ETF 期权为例

王伟冠, 丁 静, 刘 鑫   

  1. 上海大学 经济学院, 上海 200444
  • 收稿日期:2024-07-11 出版日期:2024-12-28 发布日期:2025-01-02
  • 通讯作者: 王伟冠 (1991—), 男, 博士, 研究方向为金融工程与机器学习. E-mail:weiguanwang@shu.edu.cn
  • 基金资助:
    国家自然科学青年基金资助项目 (72201158)

Non-parametric option hedging: evidence derived from SSE 50 ETF options

WANG Weiguan, DING Jing, LIU Xin   

  1. School of Economics, Shanghai University, Shanghai 200444, China
  • Received:2024-07-11 Online:2024-12-28 Published:2025-01-02

摘要: 研究了非参数期权对冲这种风险管理方法在我国市场上的表现. 投资者期望在日间 交易过程中最小化单期的均方对冲误差, 提出了使用包括前馈人工神经网络和线性回归在 内的非参数对冲方法, 构造了从期权可观测变量到对冲策略的模型. 2017—2023 年的上证 (Shanghai stock exchange, SSE) 50 交易基金 (exchange traded fund, ETF) 期权数据的实 证结果表明, 非参数模型相较于基准参数模型可以降低超过 10% 的对冲误差, 其原因在于非 参数模型能够捕捉到 SSE 50 ETF 期权中表现出的杠杆效应.

关键词: 期权对冲, 机器学习, 线性回归, 杠杆效应

Abstract: This paper investigated the performance of non-parametric option hedging methods in the Chinese market, in which investors minimized their single-period mean-squared hedging errors. Experiments were conducted using SSE (Shanghai stock exchange) 50 ETF (exchange traded fund) options. It was proposed the use of feed-forward neural networks and linear regression for model mapping from option-observable variables to hedging strategies. Results showed that non-parametric methods significantly outperformed the benchmark parametric models with hedging errors reduced by over 10% due to the fact that non-parametric models could capture the leverage effect in the SSE 50 ETF option market.

Key words: option hedging, machine learning, linear regression, leverage effect

中图分类号: