[1] 伍浩松, 孟雨晨. 联合国机构发布碳中和报告呼吁推进核能发展[J]. 国外核新闻, 2022(10): 1-2. [2] 李奎江, 邹树梁, 唐德文. 核辐射屏蔽材料的研究进展及发展趋势[J]. 现代制造技术与装备, 2017(8): 178-183. [3] 高静, 丁谦学, 梅其良, 等. 核辐射综合屏蔽材料研究进展[J]. 材料导报, 2023, 37(20): 11-18. [4] 郑伟, 汤晓斌, 黎俊, 等. 中子/γ射线混合辐射场屏蔽材料研究进展[J]. 宇航总体技术, 2024, 8(6): 66-72. [5] Natarajan R. Reprocessing of spent nuclear fuel in India: present challenges and future programme [J]. Progress in Nuclear Energy, 2017, 101: 118-132. [6] Aliyu A S, Evangeliou N, Mousseau T A, et al. An overview of current knowledge concerning the health and environmental consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident [J]. Environment International, 2015, 85: 213-228. [7] De La Rosa Blul J C, McMinn P, Grah A. Analysis of the inherent response of nuclear spent fuel pools [J]. Annals of Nuclear Energy, 2019, 124: 295-326. [8] 黄海, 徐明. 国外可移动式小型核反应堆动力系统的应用研究[J]. 核动力工程, 1995, 16(5): 401-406. [9] 李晨曦, 伍浩松. 经合组织核能机构发布报告《先进反应堆系统与未来能源市场需求》 [J]. 国外核新闻, 2022(1): 9. [10] 刘建国. "碳达峰、 碳中和" 目标下水运行业低碳发展路径探析[J]. 中国远洋海运, 2021(8): 26-28. [11] 赵盛, 霍志鹏, 钟国强, 等. 中子及伽马射线复合屏蔽材料的研究进展[J]. 功能材料, 2021, 52(3): 3001-3015. [12] Wilson J W, Cucinotta F A, Miller J, et al. Approach and issues relating to shield material design to protect astronauts from space radiation [J]. Materials & Design, 2001, 22(7): 541-554. [13] Grimes S M, Covell T, Jacobs D, et al. High accuracy determination of neutron energies from 300 keV to 5 MeV [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1995, 99(1): 678-680. [14] 刘显坤, 刘颖, 唐杰, 等. 高能射线及其屏蔽材料[J]. 核电子学与探测技术, 2006(6): 1034-1038. [15] More C V, Alsayed Z, Badawi M S, et al. Polymeric composite materials for radiation shielding: a review [J]. Environmental Chemistry Letters, 2021, 19(3): 2057-2090. [16] 何林, 蔡永军, 李强. 中子和伽马射线综合屏蔽材料研究进展[J]. 材料导报, 2018, 32(7): 1107-1113. [17] 陈守东, 陈敬超. 铅基核屏蔽材料的研究现状及发展前景展望[J]. 材料导报, 2011, 25(13): 58-60. [18] 潘晓龙, 张思雨, 郑富凯, 等. 核屏蔽用材料现状及研究进展[J]. 粉末冶金工业, 2022, 32(4): 76-84. [19] 王玉容, 赵勇, 蒋明忠, 等. 功能/结构一体化中子屏蔽材料的研究现状[J]. 精密成形工程, 2019, 11(3): 166-172. [20] Mesbahi A, Verdipoor K, Zolfagharpour F, et al. Investigation of fast neutron shielding properties of new polyurethane-based composites loaded with B4C, BeO, WO3, ZnO, and Gd2O3 micro- and nanoparticles [J]. Polish Journal of Medical Physics and Engineering, 2019, 25(4): 211-219. [21] Zhang Q P, Liang D M, Zhu W F, et al. Fabrication of h-BN@PbWO4 with a facile sol-gel method towards enhanced photocatalytic and radiation shielding properties [J]. Journal of Solid State Chemistry, 2019, 269: 594-599. [22] Fan J H, Wu J Y, Ma Y. Efiect of different size of PbWO4 particles on EPDM composite for gamma-ray shielding [J]. International Journal of Modern Physics B, 2020, 34(7): 2050046. [23] Poltabtim W, Thumwong A, Wimolmala E, et al. Dual X-ray- and neutron-shielding properties of Gd2O3/NR composites with autonomous self-healing capabilities [J]. Polymers, 2022, 14(21): 4481. [24] Murari F D, Da Costa E Silva A L V, De Avillez R R. Cold-rolled multiphase boron steels: microstructure and mechanical properties [J]. Journal of Materials Research and Technology, 2015, 4(2): 191-196. [25] Saghafi M, Ghofrani M B. Accident management support tools in nuclear power plants: a post-Fukushima review [J]. Progress in Nuclear Energy, 2016, 92: 1-14. [26] Shao Z Z, Wang C L, Song Y T. Structural design and analysis of in wall shielding for ITER [J]. Nuclear Fusion and Plasma Physics, 2011, 31(4): 350-355. [27] Soliman S, Youchison D, Baratta A, et al. Neutron effects on borated stainless steel [J]. Nuclear Technology, 1991, 96(3): 346-352. [28] Sorour A A, Chromik R R, Gauvin R, et al. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe-Cr-B-based alloy [J]. Materials Characterization, 2013, 86: 127-138. [29] Baron C, Springer H, Raabe D. Development of high modulus steels based on the Fe-Cr-B system [J]. Materials Science and Engineering: A, 2018, 724: 142-147. [30] He L, Liu Y, Li J, et al. Efiects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe-B alloys [J]. Materials & Design, 2012, 36: 88-93. [31] Liu Y, Li B H, Li J, et al. Efiect of titanium on the ductilization of Fe-B alloys with high boron content [J]. Materials Letters, 2010, 64(11): 1299-1301. [32] Pan J, Wang Z X, Yang L, et al. Fabrication and characterization of a novel FeCrAl matrix composite containing TiB2 neutron absorbers synthesized in situ [J]. Materials Characterization, 2021, 181: 111446. [33] Pan J, Wang C D, Tao Y H, et al. B/Ti atomic ratio and Al content on microstructure and properties of new neutron absorbing austenitic stainless-steel composites [J]. Metallurgical and Materials Transactions A, 2022, 53(10): 3774-3794. [34] Pan J, Wang C, Zhang H, et al. In situ synthesis and characterization of TiB2/FeMnAl metal matrix neutron absorption composites [J]. Materials Chemistry and Physics, 2024, 315: 129001. [35] Wang Q, Li Y, Chen S, et al. Interface alloying design to improve the dispersion of TiB2 nanoparticles in Al composites: a first-principles study [J]. The Journal of Physical Chemistry C, 2021, 125(10): 5937-5946. [36] Xu Z G, Jiang L T, Zhang Q, et al. The design of a novel neutron shielding B4C/Al composite containing Gd [J]. Materials & Design, 2016, 111: 375-381. [37] Sayyed M I, Mohammed F Q, Mahmoud K A, et al. Evaluation of radiation shielding features of Co and Ni-based superalloys using MCNP-5 code: potential use in nuclear safety [J]. Applied Sciences, 2020, 10(21): 7680. [38] Lister T E, Pinhero P J, Trowbridge T L, et al. Localized attack of a two-phase metal, scanning electrochemical microscopy studies of NiCrMoGd alloys [J]. Journal of Electroanalytical Chemistry, 2005, 579(2): 291-298. [39] Zhang C, Pan J, Wang Z X, et al. Gd effect on microstructure and properties of the modifled- 690 alloy for function structure integrated thermal neutron shielding [J]. Nuclear Engineering and Technology, 2023, 55(5): 1541-1558. [40] Pan J, Wang C, Wang Z, et al. Microstructure characteristics and properties of a novel Nibased alloy for thermal neutron and gamma ray co-shielding [J]. Materials Characterization, 2024, 210: 113840. [41] Pan J, Ouyang M, Liu A, et al. Corrosion behavior of new nuclear shielding Ni-Cr-W-Gd alloys in simulated spent nuclear fuel pool water [J]. Journal of Materials Research and Technology, 2024, 31: 1200-1214. [42] Dupont J N, Robino C V, Michael J R, et al. Physical and welding metallurgy of Gdenriched austenitic alloys for spent nuclear fuel applications-part Ⅰ : stainless steel alloys [J]. Welding Journal, 2004, 83(11): 289-300. [43] Jang J H, Kang J Y, Kim S D. Development of Gd-containing austenitic stainless steel [J]. Journal of Nuclear Materials, 2023, 574: 154197. [44] Kang J Y, Jang J H, Kim S D, et al. A new type of gadolinium-rich precipitate in alloy steels [J]. Journal of Nuclear Materials, 2020, 542: 152462. [45] Pan J, Wang Z X, Mei Q L, et al. Control mechanism of gadolinium-rich precipitates in new nuclear shielding FeCrNi alloys [J]. Scripta Materialia, 2023, 234: 115575. [46] Abenojar J, Velasco F, Martínez M A. Optimization of processing parameters for the Al+10% B4C system obtained by mechanical alloying [J]. Journal of Materials Processing Technology, 2007, 184(1): 441-446. [47] Lashgari H R, Emamy M, Razaghian A, et al. The effect of strontium on the microstructure, porosity and tensile properties of A356-10%B4C cast composite [J]. Materials Science and Engineering: A, 2009, 517(1): 170-179. [48] 元琳琳, 韩鹏, 陈晓宇, 等. 粉末冶金结合热轧制备高硼铝合金组织与性能研究[J]. 粉末冶金技术, 2018, 36(4): 249-255. [49] Luan W Z, Jiang C H, Wang H W. Investigation for recrystallization behavior of shot peened layer on TiB2/6351Al composite using X-ray diffraction [J]. Materials Science and Engineering: A, 2008, 496(1): 36-39. [50] Wang Z, Pan J, Liu A, et al. Microstructure and properties controlling of Al-xGd alloys for thermal neutron absorbing [J]. Journal of Nuclear Materials, 2025, 603: 155447. [51] Zhang Q C, Zheng M, Huang Y L, et al. Long term corrosion estimation of carbon steel, titanium and its alloy in backflll material of compacted bentonite for nuclear waste repository [J]. Scientiflc Reports, 2019, 9(1): 3195. [52] 静永娟, 张继. 热处理对γ-TiAl合金中Gd化合物的影响研究[J]. 金属功能材料, 2013, 20(3): 32-35. [53] Hur D H, Chun Y B, Park S Y. Corrosion behavior of neutron absorbing Ti-Gd alloys in simulated spent nuclear fuel pool water [J]. Corrosion Science, 2022, 209: 110776. [54] Kursun C, Gao M, Guclu S, et al. Measurement on the neutron and gamma radiation shielding performance of boron-doped titanium alloy Ti50Cu30Zr15B5 via arc melting technique [J]. Heliyon, 2023, 9(11): e21696. [55] Van Houten R. Selected engineering and fabrication aspects of nuclear metal hydrides (Li, Ti, Zr, and Y) [J]. Nuclear Engineering and Design, 1974, 31(3): 434-448. [56] Sears V F. Neutron scattering lengths and cross sections [J]. Neutron News, 1992, 3(3): 26-37. [57] Shivprasad A P, Frazer D M, Mehta V K, et al. Elastic moduli of high-density, sintered monoliths of yttrium dihydride [J]. Journal of Alloys and Compounds, 2020, 826: 153955. [58] Begun G M, Land J F, Bell J T. High temperature equilibrium measurements of the yttriumhydrogen isotope (H2, D2, T2) systems [J]. The Journal of Chemical Physics, 1980, 72(5): 2959- 2966. [59] Setoyama D, Ito M, Matsunaga J, et al. Mechanical properties of yttrium hydride [J]. Journal of Alloys and Compounds, 2005, 394(1): 207-210. [60] Hu X, Schappel D, Silva C M, et al. Fabrication of yttrium hydride for high-temperature moderator application [J]. Journal of Nuclear Materials, 2020, 539: 152335. |