[1] Abbasi M, Shahraki A, Taherkordi A. Deep learning for network tra-c monitoring and analysis (NTMA): a survey [J]. Computer Communications, 2021, 170: 19-41. [2] 陈子涵, 程光, 徐子恒, 等. 互联网加密流量检测、 分类与识别研究综述[J]. 计算机学报, 2023, 46(5): 1060-1085. [3] Wang Y, Xiang Y, Zhang J, et al. A novel semi-supervised approach for network tra-c clustering [C]// 20115th International Conference on Network and System Security. 2011: 169- 175. [4] Guo H, Zhang X, Wang Y, et al. Few-shot malware tra-c classiflcation method using network tra-c and meta transfer learning [C]//2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 2022: 1-5. [5] Ma X T, Wang Y P, Lai X Y, et al. A multi-perspective feature approach to few-shot classiflcation of IoT tra-c [J]. IEEE Transactions on Green Communications and Networking, 2023, 7(4): 2052-2066. [6] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks [C]// 201734th International Conference on Machine Learning. 2017: 1126-1135. [7] Yue Y, Chen X, Han Z, et al. Contrastive learning enhanced intrusion detection [J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4232-4247. [8] Shao Y, Wu W, You X, et al. Improving the generalization of MAML in few-shot classiflcation via bi-level constraint [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 33(7): 3284-3295. [9] Rezaei S, Liu X. How to achieve high classiflcation accuracy with just a few labels: a semi-supervised approach using sampled packets [EB/OL]. (2018-12-23) [2024-01-25]. https://arxiv.org/abs/1812.09761. [10] Xu C, Shen J, Du X. A method of few-shot network intrusion detection based on meta-learning framework [J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3540-3552. [11] Feng T, Qi Q, Wang J, et al. Few-shot class-adaptive anomaly detection with model-agnostic meta-learning [C]// 2021 IFIP Networking Conference. 2021: 1-9. [12] Rong C, Gou G, Hou C, et al. UMVD-FSL: unseen malware variants detection using few-shot learning [C]// 2021 International Joint Conference on Neural Networks (IJCNN). 2021: 18-22. [13] Yang C, Xiong G, Zhang Q, et al. Few-shot encrypted tra-c classiflcation via multi-task representation enhanced meta-learning [J]. Computer Networks, 2023, 228: 109731. [14] Hjelm R D, Fedorov A, Lavoie-Marchildon S, et al. Learning deep representations by mutual information estimation and maximization [EB/OL]. (2018-08-20) [2024-01-25]. https://arxiv.org/abs/1808.06670. [15] Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations [C]// 202037th International Conference on Machine Learning. 2020: 1597-1607. [16] Grill J B, Strub F, Altche F Á, et al. Bootstrap your own latent: a new approach to selfsupervised learning [J]. Advances in Neural Information Processing Systems, 2020, 33: 21271- 21284. [17] Khosla P, Teterwak P, Wang C, et al. Supervised contrastive learning [J]. Advances in Neural Information Processing Systems, 2020, 33: 18661-18673. [18] Yang J, Jiang X, Liang G, et al. Malicious tra-c identiflcation with self-supervised contrastive learning [J]. Sensors, 2023, 23(16): 7215-7232. [19] Wang W, Zhu M, Zeng X, et al. Malware tra-c classiflcation using convolutional neural network for representation learning [C]// 2017 International Conference on Information Networking (ICOIN). 2017: 712-717. [20] Wang Z. The applications of deep learning on tra-c identiflcation [J]. BlackHat USA, 2015, 24(11): 1-10. [21] 苏庆, 林佳锐, 黄海滨, 等. 融合MAML和CBAM的安卓恶意应用家族分类模型[J]. 计算机工程与应用, 2023, 59(2): 271-279. [22] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]// 201731st International Conference on Neural Information Processing Systems. 2017: 6000-6010. [23] Yao H, Liu C, Zhang P, et al. Identiflcation of encrypted tra-c through attention mechanism based long short-term memory [J]. IEEE Transactions on Big Data, 2019, 8(1): 241-252. [24] Zhao Z, Guo Y, Wang J H, et al. CL-ETC: a contrastive learning method for encrypted tra-c classiflcation [C]// 2022 IFIP Networking Conference. 2022: 1-9. [25] Madry A, Makelov A, Schmidt L, et al. Towards deep learning models resistant to adversarial attacks [EB/OL]. (2017-06-19) [2024-01-25]. https://arxiv.org/abs/1706.06083. [26] Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples [EB/OL]. (2014-12-20) [2024-01-25]. https://arxiv.org/abs/1412.6572. |