摘要:
提出一种新的高精度、高效率求解一维Schrödinger方程的Obrechkoff两步方法.通过增加奇数次高阶微商项,大幅度提高了经典Obrechkoff两步递推公式的精度.由求解Morse势束缚态本征值的数值例子表明,在精度和效率上该方法比经典方法求解一维Schrödinger方程有明显的优势.
中图分类号:
郝海玲,汪仲诚,邵和助,陈佳奇. 求解一维Schrödinger方程的P稳定Obrechkoff两步方法[J]. 上海大学学报(自然科学版), 2010, 16(1): 53-58.
HAO Hai-ling,WANG Zhong-cheng,SHAO He-zhu,CHEN Jia-qi. A P-Stable Two-Step Obrechkoff Method for One-Dimensional Schrödinger Equation[J]. Journal of Shanghai University(Natural Science Edition), 2010, 16(1): 53-58.