上海大学学报(自然科学版) ›› 2009, Vol. 15 ›› Issue (6): 649-652.

• 数理化科学 • 上一篇    下一篇

轴向运动黏弹性梁平面耦合非线性受迫振动

丁虎1,陈立群1,2   

  1. (1.上海大学 上海市应用数学和力学研究所,上海 200072; 2.上海大学 理学院,上海 200444)
  • 收稿日期:2009-03-31 出版日期:2009-12-28 发布日期:2009-12-28
  • 通讯作者: 丁虎(1978~),男,讲师,博士,研究方向为复杂动力系统的振动与控制. Email:dinghu3@shu.edu.cn
  • 作者简介:丁虎(1978~),男,讲师,博士,研究方向为复杂动力系统的振动与控制. Email:dinghu3@shu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(10672092);国家杰出青年科学基金资助项目(10725209);上海市教委基金资助项目(07ZZ07);上海市重点学科建设资助项目(S30106);上海高校选拔培养优秀青年教师科研专项基金资助项目(B37-0101-08-003);上海大学创新基金资助项目

Coupled Forced Response of Nonlinear Axially Moving Viscoelastic Beam

DING Hu1,CHEN Li-qun1,2   

  1. (1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
    2. College of Sciences, Shanghai University, Shanghai 200444, China)
  • Received:2009-03-31 Online:2009-12-28 Published:2009-12-28

摘要:

 数值研究简支边界条件下,平面耦合轴向运动黏弹性梁受简谐外激励的非线性受迫振动稳态响应问题.在控制方程中,黏弹性本构关系采用物质导数.运用有限差分方法,对两端简支的轴向运动黏弹性梁的非线性受迫振动平面耦合模型求数值解.当激励频率接近固有频率时,通过对平面耦合非线性受迫振动稳态的幅频响应进行数值仿真,确定外激励幅值、黏弹性系数以及非线性系数对稳态周期解的幅值的影响.

关键词: 轴向运动梁;黏弹性;振动;非线性;稳定性;有限差分法

Abstract:

Forced vibration is numerically investigated for planar vibration of axially moving viscoelastic beams with simple supports. The material time derivative is used in the viscoelastic constitutive relation for the governing equation.It is assumed that excitation is spatially uniform and temporally harmonic. A finite difference scheme is developed to calculate steady-state response numerically. Numerical results demonstrate that there are steady-state periodic responses in transverse vibration, and resonance occurs if the external load frequency approaches the linear natural frequencies.Numerical results also indicate that amplitudes of stable steady-state responses decrease with the viscosity coefficient and the nonlinear coefficient, and increase with the amplitude of excitation.

 

Key words: axially moving beam; viscoelasticity; vibration; nonlinear; stability; finite difference

中图分类号: