上海大学学报(自然科学版) ›› 2009, Vol. 15 ›› Issue (5): 487-492.

• 数理化科学 • 上一篇    下一篇

一类非线性Schrödinger方程的多辛Fourier拟谱方法最优误差估计

  

  1. 上海大学 理学院,上海 200444
  • 收稿日期:2008-04-28 出版日期:2009-10-30 发布日期:2009-10-30
  • 通讯作者: 马和平(1955~),男,教授,博士生导师,博士,研究方向为偏微分方程数值解. E-mail:hpma@shu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(10471089);上海市重点学科建设资助项目(J50101)

Optimal Error Estimates of Multi-symplectic Fourier Pseudospectral Method for Nonlinear Schrödinger Equation

  1. College of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2008-04-28 Online:2009-10-30 Published:2009-10-30

摘要:

考虑用多辛Fourier拟谱方法来处理一类非线性Schrödinger方程的周期边值问题.分析半离散多辛Fourier拟谱格式的稳定性,得到了最优收敛阶.给出全离散多辛Fourier拟谱格式的最优收敛阶.数值算例表明了算法的有效性.

关键词: Fourier拟谱方法;多辛;非线性Schrödinger方程;最优误差估计

Abstract:

This paper focuses on multi-symplectic Fourier pseudospectral approximations to the nonlinear Schrödinger equation with initial and periodic boundary conditions. Stability and optimal convergence order of the semi-discretization scheme are obtained. Optimal error estimate for the fully discrete scheme is also given. Numerical experiments are presented.

Key words: Fourier pseudospectral method;multi-symplectic;nonlinear Schrödinger equation;optimal error estimate

中图分类号: