上海大学学报(自然科学版) ›› 2009, Vol. 15 ›› Issue (4): 410-416.

• 数理化科学 • 上一篇    下一篇

泊松方程的边界点法求解与区域积分的规则网格处理

夏利伟 马杭   

  1. 上海大学 理学院,上海 200444
  • 出版日期:2009-08-30 发布日期:2009-08-30
  • 通讯作者: 马杭(1951~),男,教授,博士生导师,博士,研究方向为计算固体力学. E-mail:hangma@staff.shu.edu.cn

Treatment of Domain Integrals Using Cartesian Grids for Solving Poisson Equation with Boundary Point Method

  1. College of Sciences, Shanghai University, Shanghai 200444, China
  • Online:2009-08-30 Published:2009-08-30

摘要:

提出用规则网格来处理用边界积分方程方法数值求解Poisson方程时遇到的区域积分问题的新方法.传统上区域积分通过内部单元来处理,其精度高,稳定性好,但人工消耗较大.引入规则网格可以在保持内部单元所有优点的同时大大减小初始数据准备的时间,因为在边界型方法中内部单元的作用是评价内部变量对边界未知量的影响,并不直接影响边界条件的处理以及相应的形函数构造.利用提出的规则网格技术并结合新的边界型数值方法——边界点法求解Poisson方程,给出的若干算例具有较高的计算精度,显示出方法的可行性,并从计算的角度讨论网格间距与边界点支域大小的关系对计算精度的影响.

关键词: 边界积分方程;区域积分;规则网格;边界点法;Poisson方程

Abstract:

The use of Cartesian grids is proposed to treat domain integrals encountered in the numerical solution of Poisson equations with boundary integral equations. Traditionally, domain integrals are treated by using internal cells, which makes the algorithm stable and accurate but takes much human labor. By introducing Cartesian grids, the time for data preparation is greatly reduced while keeping all merits of using internal cells. This is because cells have nothing to do with the handling of boundary conditions and the construction of related shape functions in the boundary type methods, but are only for evaluation of the domain’s influences on the boundary unknowns. Techniques of using Cartesian grids are developed and combined with the newly developed boundarytype numerical method, the boundary point method, to solve the Poisson equations. Several numerical examples are presented to show feasibility and accuracy of the proposed algorithm. The effects of the relation between spacing of Cartesian grids and the support of the boundary points on accuracy are investigated in the computations.

Key words: boundary integral equation; domain integral; Cartesian grids; boundary point method; Poisson equation

中图分类号: