上海大学学报(自然科学版)

• 计算机工程与科学 • 上一篇    下一篇

一种基于支持向量机的并行训练策略

雷咏梅,王雄,郭恒明,金亨科   

  1. 上海大学 计算机工程与科学学院,上海 200072
  • 收稿日期:2007-05-08 修回日期:1900-01-01 出版日期:2007-10-20 发布日期:2007-10-20
  • 通讯作者: 雷咏梅

Parallel Training Strategy Based on Support Vector Machine

LEI Yong-mei,WANG Xiong,GUO Heng-ming,JIN Heng-ke   

  1. School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
  • Received:2007-05-08 Revised:1900-01-01 Online:2007-10-20 Published:2007-10-20
  • Contact: LEI Yong-mei

摘要: 针对基于支持向量机的分类器训练时间过长问题,提出一种并行训练策略.该策略在并行程序设计上采用主从模式,将训练任务划分成若干个子任务,分配到多个从节点上计算,最后由主节点将各从节点上的训练结果收集,生成分类器模型.采用这种算法,使用了多组稀疏型和连续型的数据集,经过在自强3000高性能计算机上测试,实验结果表明该算法不仅能够保证多分类的高准确率,而且缩短了训练时间.

关键词: 并行计算, 并行训练, 决策函数(df), 支持向量机(SVM)

Abstract: We propose a parallel training strategy, which is an improved parallel algorithm of support vector machine (SVM), to shorten the training time based on SVM's classification. The strategy uses the master-salve mode and divides the whole training task into several subtasks, each sub-task computed by a node. The master node collects the training results from slave nodes to produce the classifiable model. Performance of this algorithm is analyzed and evaluated with sparse and dense dataset on a high-performance computer ZQ3000 cluster. The results indicate that the proposed method can ensure high precision in the original multi-classification and reduce training time.

Key words: decision-function, parallel training, support vector machine (SVM), parallel computing