上海大学学报(自然科学版)

• 通信与信息工程 • 上一篇    下一篇

0-1多项式背包问题的一种精确算法

盛红波,孙娟,孙小玲   

  1. 上海大学 理学院,上海 200444
  • 收稿日期:2005-09-19 修回日期:1900-01-01 出版日期:1900-01-01 发布日期:1900-01-01
  • 通讯作者: 孙小玲

A Rigorous Method for Solving 0-1 Polynomial Knapsack Problem

SHENG Hong-bo,SUN Juan,SUN Xiao-ling   

  1. School of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2005-09-19 Revised:1900-01-01 Online:1900-01-01 Published:1900-01-01
  • Contact: SUN Xiao-ling

摘要:

提出了0-1多项式背包问题的一种新的精确算法. 该算法是一个基于拉格朗日松弛和
对偶搜索的分枝定界方法. 用外逼近法求拉格朗日对偶问题得到上界,其中拉格朗日松弛问题通过转化为一个网络最大流问题来求解. 为了提高算法的效率,利用两种启发式方法求初始可行解,并用填充和交换的方法改进后得到初始下界; 并且在
分枝定界前, 利用所得到的拉格朗日界, 先固定最优解中某些变量的值. 数值结果表明该算法是有效的.

关键词:

0-1多项式背包问题, 分枝定界法, 拉格朗日松弛, 最大流法

Abstract:

This paper proposes a rigorous algorithm for solving the 0-1 polynomial knapsack problem. The algorithm uses a branch-and-bound method based on Lagrangian relaxation and dual search. The upper bounds are computed with the outer approximation method where Lagrangian relaxations are solved with the maximumflow algorithm. Heuristic procedures are derived to search for feasible solutions, and some variables in the optimal solution are determined before the branch-and-bound process, thus improving performance of the algorithm. Promising computational results are reported for test problems.

Key words: branch-and-bound method, Lagrangian relaxation, maximum-flow algorithm

,

0-1 polynomial knapsack problem

中图分类号: