上海大学学报(自然科学版) ›› 2016, Vol. 22 ›› Issue (2): 239-244.doi: 10.3969/j.issn.1007-2861.2015.05.020

• 环境与化学工程 • 上一篇    下一篇

镍掺杂SnO2纳米微球锂离子电池负极材料的制备及其性能

苗纯杰, 胡志翔, 任兰兰, 郜子明, 董敬余, 李琦, 罗志刚, 陈志文   

  1. 上海大学环境与化学工程学院, 上海 200444
  • 收稿日期:2016-01-15 出版日期:2016-04-30 发布日期:2016-04-30
  • 通讯作者: 陈志文(1962—),男,教授,博士生导师,研究方向为纳米材料的合成与性质. E-mail: zwchen@shu.edu.cn
  • 作者简介:陈志文(1962—),男,教授,博士生导师,研究方向为纳米材料的合成与性质. E-mail: zwchen@shu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(11375111, 11428410);教育部博士点基金资助项目(20133108110021)

Preparation and properties of Ni-doped SnO2 nanospheres for lithium-ion battery anode materials

MIAO Chunjie, HU Zhixiang, REN Lanlan, GAO Ziming, DONG Jingyu, LI Qi, LUO Zhigang, CHEN Zhiwen   

  1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
  • Received:2016-01-15 Online:2016-04-30 Published:2016-04-30

摘要:

利用简单的一步水热法制备高性能的镍掺杂SnO2 纳米微球锂离子电池负极材料. 利用扫描电镜(scanning electron microscope, SEM)、高分辨率透射电镜(high resolution transmission electron microscope, HRTEM)、拉曼分析仪、X射线衍射(X-ray diffraction, XRD)仪以及电化学性能测试仪器(如蓝电测试系统、电化学工作站)分别研究了镍掺杂对SnO2 微观形貌、组成、结晶行为及电化学性能的影响, 并得到了最佳反应时间. 实验结果表明:与纯SnO2相比, 镍掺杂SnO2 纳米微球表现出了更好的倍率性能和优异的循环性能. 特别地, 反应时间为12 h 的5 % 镍掺杂SnO2 在100 mA/g 电流密度下的首次放电比容量为1 970.3 mA·h/g,远高于SnO2 的理论容量782 mA·h/g. 这是因为镍掺杂可适应庞大的体积膨胀, 避免了纳米粒子的团聚, 因此其电化学性能得到了显著改善.

关键词: 负极材料, 锂离子电池 , 镍掺杂SnO2

Abstract:

Ni-doped SnO2 nanospheres were synthesized with a facile one-step hydrothermal method as a high-performance anode material for lithium-ion batteries. Scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), Raman analyzer, X-ray diffraction (XRD) and electrochemical performance testing equipment such as blue electrical test systems and electrochemical workstation were used to investigate morphology, composition, crystallization behavior and electrochemical properties of Ni-doped SnO2 and find the best doping reaction time. It has been found that the appropriate Ni-doped SnO2 nanospheres showed much better rate capability and excellent cycling performance compared with the pristine SnO2. In particular, the sample of 5%  Ni-doped SnO2 whose reaction time was 12 h showed a high initial discharge capacity of 1 970.3 mA·h/g at a current density of 100 mA/g, far higher than the theoretical capacity of SnO2 of 782 mA·h/g. This was because Ni-doping could accommodate huge volume expansion and avoid agglomeration of nanoparticles. Thus, the electrochemical performance of Ni-doped SnO2 nanospheres was significantly improved.

Key words:  anode material,  lithium-ion battery , Ni-doped SnO