上海大学学报(自然科学版) ›› 2015, Vol. 21 ›› Issue (2): 152-159.doi: 10.3969/j.issn.1007-2861.2014.05.012

• 金属材料 • 上一篇    下一篇

快中子增殖反应堆燃料元件包壳材料的晶界工程技术应用展望

夏爽, 周邦新   

  1. (上海大学材料研究所, 上海200072)
  • 收稿日期:2015-03-01 出版日期:2015-04-29 发布日期:2015-04-29
  • 通讯作者: 夏爽(1979—), 男, 副研究员, 博士, 研究方向为核电关键材料, 镍基合金、不锈钢的晶界工程等. E-mail:xs@shu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973 计划)资助项目(2011CB605002); 上海市科委重点支撑资助项目(13520500500)

Feasibility and benefits of applying grain boundary engineering to fuel cladding materials of liquid metal cooled fast breeder reactor

XIA Shuang, ZHOU Bang-xin   

  1. (Institute of Materials, Shanghai University, Shanghai 200072, China)
  • Received:2015-03-01 Online:2015-04-29 Published:2015-04-29

摘要: 针对钠冷快中子增殖反应堆(简称快堆) 燃料元件包壳材料316 以及15-15Ti 奥氏体不锈钢, 讨论了通过晶界工程(grain boundary engineering, GBE) 技术进一步提高材料抗辐照肿胀以及抗蠕变性能的可行性. 通过GBE 技术能够大幅增加材料中与孪晶相关的低 重合位置点阵(coincidence site lattice, CSL) 晶界比例. 快堆燃料元件包壳在固溶退火处理后还要经过20% 左右的冷加工变形, 目的是在显微组织中引入大量位错, 吸收由辐照产生的点缺陷, 并增加吸收裂变产物的陷阱. 如果在这样的冷加工变形前大幅提高材料的低∑CSL 晶界比例, 使冷加工变形时的位错滑移在具有特殊取向关系的晶粒间的传播以及位错在特殊结构晶界处的堆积排列发生变化, 那么就有可能使冷加工后位错的分布状态有利于吸收更多的由辐照产生的点缺陷, 提高材料抗辐照肿胀的能力.

关键词: 15-15Ti 不锈钢, 316Ti 不锈钢, 辐照肿胀, 晶界工程, 燃料包壳, 蠕变

Abstract: Feasibility and benefits of applying grain boundary engineering (GBE) to the fuel cladding material 316 or 15-15Ti austenitic stainless steels of sodium-cooled-fastreactor for reducing void swelling and creep is discussed. GBE can be used to greatly enhance the proportion of low  coincidence site lattice (CSL) grain boundaries that are mainly of annealing twins and its variants. The cladding tubes are normally subjected to 20% cold working after solution annealing before using, which by virtue of providing a dislocation strewn matrix microstructure, contributes to the annihilations of irradiationinduced point defects. If the proportion of low CSL grain boundaries are greatly enhanced prior to the cold working, transfer of slip across the special-structured grain boundaries or pile-up against them during deformation may alter the distribution of dislocations of the microstructure, which may accommodate more defects generated during being irradiated.

Key words: 15-15Ti stainlesssteel, 316Ti stainless steel, creep, fuel cladding, grain boundary engineering (GBE), void swelling

中图分类号: