[1] |
贾志方. 新型可见光催化剂的制备及其光催化性能的研究[D]. 天津: 天津大学, 2011.
|
[2] |
宋海燕. 新型光催化材料的制备与催化性能研究[D]. 合肥: 中国科学技术大学, 2006.
|
[3] |
Zhang X, Wang Y, Liu B, et al. Heterostructures construction on TiO$_{2}$ nanobelts: a powerful tool for building high-performance photocatalysts[J]. Applied Catalysis B: Environmental, 2017,202:620-641.
doi: 10.1016/j.apcatb.2016.09.068
|
[4] |
田健. 基于一维二氧化钛纳米带表面异质结构的太阳光全波段(紫外, 可见与近红外)光催化性能研究[D]. 济南: 山东大学, 2014.
|
[5] |
Guo Q, Huang Y, Xu H, et al. The effects of solvent on photocatalytic properties of Bi$_{2}$WO$_{6}$/TiO$_{2}$ heterojunction under visible light irradiation[J]. Solid State Sciences, 2018,78:95-106.
doi: 10.1016/j.solidstatesciences.2018.02.013
|
[6] |
Meng X, Zhang Z. Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches[J]. Journal of Molecular Catalysis A: Chemical, 2016,423:533-549.
doi: 10.1016/j.molcata.2016.07.030
|
[7] |
Zhang L, Wang H, Chen Z, et al. Bi$_{2}$WO$_{6}$ micro/nano-structures: synjournal, modifications and visible-light-driven photocatalytic applications[J]. Applied Catalysis B: Environmental, 2011,106(1/2):1-13.
|
[8] |
Di J, Xia J X, Ge Y P, et al. Novel visible-light-driven CQDs/Bi$_{2}$WO$_{6}$ hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanisminsight[J]. Applied Catalysis B: Environmental, 2015,168:51-61.
|
[9] |
Kong X Y, Tan W L, Ng B J, et al. Harnessing Vis-NIR broad spectrum for photocatalytic CO$_{2}$ reduction over carbon quantum dots-decorated ultrathin Bi$_{2}$WO$_{6}$ nanosheets[J]. Nano Research, 2017,10(5):1720-1731.
doi: 10.1007/s12274-017-1435-4
|
[10] |
Qian X F, Yue D T, Tian Z Y, et al. Carbon quantum dots decorated Bi$_{2}$WO$_{6}$ nanocomposite with enhanced photocatalytic oxidation activity for VOCs[J]. Applied Catalysis B: Environmental, 2016,193:16-21.
doi: 10.1016/j.apcatb.2016.04.009
|
[11] |
Dong S, Ding X, Guo T, et al. Self-assembled hollow sphere shaped Bi$_{2}$WO$_{6}$/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants[J]. Chemical Engineering Journal, 2017,316:778-789.
doi: 10.1016/j.cej.2017.02.017
|
[12] |
Wang H, Liang Y H, Li L, et al. Reduced graphene oxide wrapped Bi$_{2}$WO$_{6}$ hybrid with ultrafast charge separation and improved photoelectrocatalytic performance[J]. Applied Surface Science, 2017,392:51-60.
doi: 10.1016/j.apsusc.2016.08.068
|
[13] |
Wang Y, Wang J, Shen H, et al. Synjournal of Ag$_{3}$PO$_{4}$/RGO/Bi$_{2}$WO$_{6}$ composites with highly efficient photocatalytic activity: efficient visible-light driven all-solid-state Z-scheme photocatalyst[J]. Nano, 2017,12:12.
|
[14] |
Ge M, Li Y, Liu L, et al. Bi$_{2}$O$_{3}$-Bi$_{2}$WO$_{6}$ composite microspheres: hydrothermal synjournal and photocatalytic performances[J]. The Journal of Physical Chemistry C, 2011,115(13):5220-5225.
doi: 10.1021/jp108414e
|
[15] |
Wang H, Li S, Zhang L, et al. Surface decoration of Bi$_{2}$WO$_{6}$ superstructures with Bi$_{2}$O$_{3}$ nanoparticles: an efficient method to improve visible-light-driven photocatalytic activity[J]. Crystengcomm, 2013,15(44):9011.
doi: 10.1039/c3ce41447g
|
[16] |
Zhong S, Zhang F, Lu W, et al. One-step synjournal of Bi$_{2}$WO$_{6}$/Bi$_{2}$O$_{3}$ loaded reduced graphene oxide multicomponent composite with enhanced visible-light photocatalytic activity[J]. RSC Advances, 2015,5(84):68646-68654.
doi: 10.1039/C5RA08538A
|
[17] |
Gui M S, Zhang W D, Chang Y Q, et al. One-step hydrothermal preparation strategy for nanostructured WO$_{3}$/Bi$_{2}$WO$_{6}$ heterojunction with high visible light photocatalytic activity[J]. Chemical Engineering Journal, 2012,197:283-288.
doi: 10.1016/j.cej.2012.05.032
|
[18] |
Liu Z, Yu Q, Liu J, et al. Enhanced visible photocatalytic activity in flower-like CuO-WO$_{3}$-Bi$_{2}$WO$_{6}$ ternary hybrid through the cascadal electron transfer[J]. Micro and Nano Letters, 2017,12(3):195-200.
doi: 10.1049/mna2.v12.3
|
[19] |
Liu L, Ding L, Liu Y, et al. Enhanced visible light photocatalytic activity by Cu$_{2}$O-coupled flower-like Bi$_{2}$WO$_{6}$ structures[J]. Applied Surface Science, 2016,364:505-515.
doi: 10.1016/j.apsusc.2015.12.170
|
[20] |
Liang Y H, Lin S L, Liu L, et al. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi$_{2}$WO$_{6}$: enhanced photocatalytic degradation under visible light irradiation[J]. Applied Catalysis B: Environmental, 2015,164:192-203.
doi: 10.1016/j.apcatb.2014.08.048
|
[21] |
Low J X, Yu J G, Li Q, et al. Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi$_{2}$WO$_{6}$ nanosheets[J]. Phys Chem Chem Phys, 2014,16(3):1111-1120.
doi: 10.1039/c3cp53820f
pmid: 24287866
|
[22] |
Huang Y, Kang S, Yang Y, et al. Facile synjournal of Bi/Bi$_{2}$WO$_{6}$ nanocomposite with enhanced photocatalytic activity under visible light[J]. Applied Catalysis B: Environmental, 2016,196:89-99.
doi: 10.1016/j.apcatb.2016.05.022
|
[23] |
Lu S Y, Yu Y N, Bao S J, et al. In situ synjournal and excellent photocatalytic activity of tiny Bi decorated bismuth tungstate nanorods[J]. RSC Advances, 2015,5(104):85500-85505.
doi: 10.1039/C5RA15406E
|
[24] |
Wang J, Tang L, Zeng G, et al. Plasmonic Bi Metal deposition and g-C$_{3}$N$_{4}$ coating on Bi$_{2}$WO$_{6}$ microspheres for efficient visible-light photocatalysis[J]. ACS Sustainable Chemistry and Engineering, 2016,5(1):1062-1072.
doi: 10.1021/acssuschemeng.6b02351
|
[25] |
Zhang X, Yu S, Liu Y, et al. Photoreduction of non-noble metal Bi on the surface of Bi$_{2}$WO$_{6}$ for enhanced visible light photocatalysis[J]. Applied Surface Science, 2017,396:652-658.
doi: 10.1016/j.apsusc.2016.11.002
|
[26] |
Zhang Z, Wang W, Wang L, et al. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi$_{2}$S$_{3}$/Bi$_{2}$WO$_{6}$[J]. ACS Applied Materials and Interfaces, 2012,4(2):593-597.
doi: 10.1021/am2017199
pmid: 22248230
|
[27] |
Issarapanacheewin S, Wetchakun K, Phanichphant S, et al. Photodegradation of organic dyes by CeO$_{2}$/Bi$_{2}$WO$_{6}$ nanocomposite and its physicochemical properties investigation[J]. Ceramics International, 2016,42(14):16007-16016.
doi: 10.1016/j.ceramint.2016.07.108
|
[28] |
Lü Z, Zhou H, Liu H, et al. Controlled assemble of oxygen vacant CeO$_{2}$@Bi$_{2}$WO$_{6}$ hollow magnetic microcapsule heterostructures for visible-light photocatalytic activity[J]. Chemical Engineering Journal, 2017,330:1297-1305.
doi: 10.1016/j.cej.2017.08.074
|
[29] |
Meng X, Li Z, Zeng H, et al. MoS$_{2}$ quantum dots-interspersed Bi$_{2}$WO$_{6}$ heterostructures for visible light-induced detoxification and disinfection[J]. Applied Catalysis B: Environmental, 2017,210:160-172.
doi: 10.1016/j.apcatb.2017.02.083
|
[30] |
Zhang J, Huang L H, Jin H Y, et al. Constructing two-dimension MoS$_{2}$/Bi$_{2}$WO$_{6}$ core-shell heterostructure as carriers transfer channel for enhancing photocatalytic activity[J]. Mater Res Bull, 2017,85:140-146.
doi: 10.1016/j.materresbull.2016.09.013
|
[31] |
Chen F, Li D, Luo B, et al. Two-dimensional heterojunction photocatalysts constructed by graphite-like C$_{3}$N$_{4}$ and Bi$_{2}$WO$_{6}$ nanosheets: enhanced photocatalytic activities for water purification[J]. Journal of Alloys and Compounds, 2017,694:193-200.
doi: 10.1016/j.jallcom.2016.09.326
|
[32] |
Jiang D, Ma W, Xiao P, et al. Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi$_{2}$WO$_{6}$ ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator[J]. Journal of Colloid and Interface Science, 2018,512:693-700.
doi: 10.1016/j.jcis.2017.10.074
pmid: 29107920
|
[33] |
Chong B, Chen L, Wang W, et al. Visible-light-driven Ag-decorated g-C$_{3}$N$_{4}$ /Bi$_{2}$WO$_{6}$ Z-scheme composite for high photocatalytic activity[J]. Materials Letters, 2017,204:149-153.
doi: 10.1016/j.matlet.2017.06.033
|
[34] |
Chen W, Liu T Y, Huang T, et al. In situ fabrication of novel Z-scheme Bi$_{2}$WO$_{6}$ quantum dots/g-C$_{3}$N$_{4}$ ultrathin nanosheets heterostructures with improved photocatalytic activity[J]. Applied Surface Science, 2015,355:379-387.
doi: 10.1016/j.apsusc.2015.07.111
|
[35] |
Chen G, Ji S, Sang Y, et al. Synjournal of scaly Sn$_{3}$O$_{4}$/TiO$_{2}$ nanobelt heterostructures for enhanced UV-visible light photocatalytic activity[J]. Nanoscale, 2015,7(7):3117-3125.
doi: 10.1039/c4nr05749j
pmid: 25611372
|
[36] |
Hu X, Li Y, Tian J, et al. Highly efficient full solar spectrum (UV-vis-NIR) photocatalytic performance of Ag$_{2}$S quantum dot/TiO$_{2}$ nanobelt heterostructures[J]. Journal of Industrial and Engineering Chemistry, 2017,45:189-196.
doi: 10.1016/j.jiec.2016.09.022
|
[37] |
Yang H, Tian J, Bo Y, et al. Visible photocatalytic and photoelectrochemical activities of TiO$_{2}$ nanobelts modified by In$_{2}$O$_{3}$ nanoparticles[J]. Journal of Colloid and Interface Science, 2017,487:258-265.
doi: 10.1016/j.jcis.2016.10.051
pmid: 27776284
|
[38] |
Tian J, Sang Y H, Yu G W, et al. A Bi$_{2}$WO$_{6}$-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Adv Mater, 2013,25(36):5075-5080.
doi: 10.1002/adma.201302014
pmid: 23852936
|
[39] |
Zhou W, Du G, Hu P, et al. Nanoheterostructures on TiO$_{2}$ nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance[J]. Journal of Materials Chemistry, 2011,21(22):7937.
doi: 10.1039/c1jm10588d
|
[40] |
桂明生. 钨酸铋基异质结型催化剂的制备及其光催化性能的研究[D]. 广州: 华南理工大学, 2012.
|
[41] |
Li S, Hu S, Jiang W, et al. Facile synjournal of flower-like Ag$_{3}$VO$_{4}$/Bi$_{2}$WO$_{6 }$ heterojunction with enhanced visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2017,501:156-163.
doi: 10.1016/j.jcis.2017.04.057
pmid: 28453981
|
[42] |
王蒙. 掺杂型Bi$_{2}$WO$_{6}$催化剂的制备及光催化性能的研究[D]. 西安: 西北大学, 2014.
|
[43] |
Hou Y F, Liu S J, Zhang J H, et al. Facile hydrothermal synjournal of TiO$_{2}$-Bi$_{2}$WO$_{6}$ hollow superstructures with excellent photocatalysis and recycle properties[J]. Dalton Transactions, 2014,43(3):1025-1031.
doi: 10.1039/c3dt52046c
|