上海大学学报(自然科学版) ›› 2018, Vol. 24 ›› Issue (3): 352-366.doi: 10.12066/j.issn.1007-2861.1831

• 研究论文 • 上一篇    下一篇

改进Softmax分类器的深度卷积神经网络及其在人脸识别中的应用

冉鹏, 王灵, 李昕(), 刘鹏伟   

  1. 上海大学 机电工程与自动化学院, 上海 200444
  • 收稿日期:2016-07-03 出版日期:2018-06-15 发布日期:2018-06-27
  • 通讯作者: 李昕 E-mail:su_xinli@aliyun.com
  • 基金资助:
    国家重大科学仪器设备开发专项基金项目(2012YQ150087);上海市科委重点基金资助项目(14DZ1206302)

Improved softmax classifier for deep convolution neural networks and its application in face recognition

RAN Peng, WANG Ling, LI Xin(), LIU Pengwei   

  1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
  • Received:2016-07-03 Online:2018-06-15 Published:2018-06-27
  • Contact: LI Xin E-mail:su_xinli@aliyun.com

摘要:

提出了一种有效的特征学习方法, 构建了9层结构的卷积神经网络,利用Softmax回归算法进行人脸分类识别.卷积神经网络在输出层利用改进的Softmax进行分类,在隐藏层采用修正线性单元作为激活函数,并在网络中加入局部响应归一化处理, 有效避免了梯度消失问题.利用大量人脸图像数据对网络进行预训练, 得到较好的网络初始权重.在针对YALE, FERET, LFW-A等人脸数据库进行人脸识别实验中,与现有的几种人脸识别方法SDAEs, RRC, MPCRC, CRC,SRC等进行对比表明, 该方法在各人脸数据库的识别中均得到较高的识别率.

关键词: 卷积神经网络, 线性修正单元, 局部响应归一化, 人脸识别

Abstract:

An effective learning method by constructing a 9-layer convolution neural network structure, using the softmax regression for human face classification and identification is proposed. Taking advantage of the improved softmax classifier in the output layer, using a rectified linear unit as the activation function in the hidden layer and local response normalization processes in the network, the problem of vanishing gradient is well solved. Pre-trained by using a large number of face images, proper network initial weights are obtained. Experiments based on three face databases YALE, FERET and LFW-A, demonstrate that the proposed method approaches the highest recognition rate compared with other methods such as SDAEs, RRC, MPCRC, CRC and SRC.

Key words: convolution neural network, rectified linear unit, local response normalization, face recognition

中图分类号: