上海大学学报(自然科学版) ›› 2018, Vol. 24 ›› Issue (2): 225-235.doi: 10.12066/j.issn.1007-2861.1804

• 研究论文 • 上一篇    下一篇

基于磷钼酸和纳米氧化钼的复合空穴传输层材料及其在有机太阳能电池中的应用

王宜玲1,2, 伊金垛1,2, 骆群2, 谢中明3, 李艳青3, 马昌期2, 罗立强1()   

  1. 1. 上海大学 理学院, 上海 200444
    2. 中国科学院 苏州纳米技术与纳米仿生研究所 印刷电子技术研究中心, 江苏 苏州 215123
    3. 苏州大学 功能纳米与软物质研究院 苏州纳米科技协同创新中心, 江苏 苏州 215123
  • 收稿日期:2016-05-23 出版日期:2018-04-30 发布日期:2018-05-07
  • 通讯作者: 罗立强 E-mail:luck@shu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61306073);国家自然科学基金资助项目(61571278);江苏省自然科学基金资助项目(BK20130346);中国科学院战略重点研究资助项目(XDA09020201)

PMA:MoO$_3$ nanocomposite hole transport layer for organic solar cells

WANG Yiling1,2, YI Jinduo1,2, LUO Qun2, XIE Zhongming3, LI Yanqing3, MA Changqi2, LUO Liqiang1()   

  1. 1. College of Sciences, Shanghai University, Shanghai 200444, China
    2. Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences, Suzhou 215123, Jiangsu, China
    3. Collaborative Innovation Center of Suzhou Nano Science and Technology, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123, Jiangsu, China
  • Received:2016-05-23 Online:2018-04-30 Published:2018-05-07
  • Contact: LUO Liqiang E-mail:luck@shu.edu.cn

摘要:

围绕着开发可溶液法加工非聚(3,4-乙烯二氧噻吩单体):聚苯乙烯磺酸钠(poly (3,4-ethylendioxythiophene):poly (sodium-p-styrenesulfonate), PEDOT:PSS) 电极界面修饰材料的核心目的, 研究了基于磷钼酸(phosphomolybdic acid, PMA)和纳米氧化钼(MoO$_{3}$) 复合物的新型空穴传输材料. 通过将 PMA 溶液和 MoO$_{3}$ 纳米粒子溶液进行混合, 制备了复合墨水(PMA:MoO$_{3}$). 该复合墨水在有机活性层表面具有很好的浸润性和成膜性. 利用 PMA:MoO$_{3}$复合空穴传输层(hole transport layer, HTL)制备的倒置 P3HT:PC$_{61}$BM 光伏器件的开 路电压和填充因子(fill factor, FF)均比基于单一 PMA 或 MoO$_{3}$ 制备的器件有所提升. 进一步优化了 PMA:MoO$_{3}$ 复合墨水中两个组分间的比例, 发现当复合墨水中 MoO$_{3}$的含量为 66${\%}$ 时, 器件性能达到最优, 其光电转换效率(power conversion efficiency, PCE)为 3.71${\%}$. 成功验证了利用金属氧化物与多金属氧簇(polyoxometalate, POM)复合物作为电极界面缓冲层 制备有机太阳能电池的可行性, 为开发新型电极界面修饰材料提供了一个新的研究思路.

关键词: 有机太阳能电池, 空穴传输层, 纳米金属氧化物, 多金属氧簇, 可溶液法加工

Abstract:

To develop PEDOT:PSS (poly (3,4-ethylendioxythiophene):poly (sodium-p-styrenesulfonate)—hole transporting materials in polymer solar cells, a solution-processable nanocomposite ink based on MoO$_3$ nano-particles and phosphomolybdic acid (PMA) is reported. The PMA:MoO$_3$ composite ink can be easily prepared by simply mixing PMA and MoO$_3$ solutions in different weight ratios. This PMA:MoO$_3$ composite ink shows good wettability on polymer surface. A smooth and homogeneous thin film can be easily deposited on polymer surface via a spin-coating process without any surface treatment. Both open circuit voltage ($V_ {OC}$) and fill factor (FF) of the PMA:MoO$_3$-based P3HT:PC$_{61}$BM cells are higher than that based on PMA or MoO$_3$ cells. Influence of the blend ratio between PMA and MoO3 on solar cell performance was carried out, and the optimized best blend ratio was found to be 1:2 for PMA:MoO$_3$, with which a highest device performance of 3.71% was achieved. The current work demonstrates that nanocomposite of metal oxide and polyoxometalate (POM) can serve as an excellent electrode buffer layer for solution-processed organic electronics.

Key words: organic solar cell, hole transport layer (HTL), nano metal oxide, polyoxometalate (POM), solution processibility

中图分类号: