Feature fusion for front vehicle detection and implementation

Expand
  • School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Received date: 2016-02-06

  Online published: 2017-12-30

Abstract

To achieve robust and real-time detection of front vehicles, an algorithm is proposed based on morphological features and HAAR-like features of vehicles. To avoid interference of external environmental factors in the extraction of shadows underneath the vehicle, the monkey king genetic algorithm (MKGA) threshold segmentation is used. Regions of interest are obtained using morphological characteristics in the initial screening. HAAR-like features of these regions are extracted, and the dimension is reduced. In the secondary screening, an auto classifier trained by support vector machine (SVM) is input. A total of 300 frames are randomly selected to verify the algorithm. Experimental results show that the algorithm can detect vehicles in a complicated environment. Compared to single feature detection, accuracy is raised from 80% to 90%. The HAAR-like integral diagram and PCA for dimension reduction can effectively improve detection speed. The algorithm meets the driving assistance system requirements both in accuracy and speed.

Cite this article

LIU Dongjun, XU Meihua, GONG Luming, XIA Chenjun . Feature fusion for front vehicle detection and implementation[J]. Journal of Shanghai University, 2017 , 23(6) : 893 . DOI: 10.12066/j.issn.1007-2861.1767

References

[1] 郑湃, 崔立真, 王海洋. 云计算环境下面向数据密集型应用的数据布局策略与方法[J]. 计算机学报, 2010(8): 1472-1480.

[2] 胡铟, 杨靖宇. 基于模型的车辆检测与跟踪[J]. 中国图像图形学报, 2008, 13(3): 450-455.

[3] Sun Z H, Bebis G, Miller R. On-road vehicle detection: a review [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2006, 28(5): 694-711.

[4] Wang J X, Bebis G, Miller R. Overtaking vehicle detection using dynamic and quasi-static background modeling [C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005: 64-71.

[5] Franke U, Gavrila D, Grzigs, et al. Autonomous driving goes downtown [J]. IEEE Intelligent Systems & Their Applications, 1998, 13(6): 40-48.

[6] 慕永云, 王荣本, 赵一兵. 基于多特征融合的前方车辆检测方法研究[J]. 计算机应用研究, 2011, 28(9): 3572-3575.

[7] 张建明, 张玲增, 刘志强. 一种结合多特征的前方车辆检测与跟踪方法[J]. 计算机工程与应用, 2011, 47(5): 220-223.

[8] 金立生, 王岩, 刘景华, . 基于Adaboost 算法的日间前方车辆检测[J]. 吉林大学学报(工学版), 2014, 44(6): 1604-1608.

[9] Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Transaction on Systems, Man and Cybernetics, 1979, 9(1): 62-66.

[10] Wang L, Duan H CH, Wang J L. A fast algorithm for three-dimensional Otsu’s thresholding method [J]. IEEE International Symposium on IT in Medicine and Education, 2008, 153(2): 136-140.

[11] 陈琪, 熊博莅, 陆军, . 改进的二维Otsu 图像分割方法及其快速实现[J]. 电子与信息学报, 2010, 32(5): 1100-1104.

[12] 汪海洋, 潘德炉, 夏德深. 二维Otsu 自适应阈值选取算法的快速实现[J]. 自动化学报, 2007, 33(9): 968-971.

[13] 王宏文, 梁彦彦, 王志华. 基于新遗传算法的Otsu 图像阈值分割方法[J]. 激光技术, 2014, 38(3), 364-367.

[14] 李宇中, 刘红星, 张胜. 猴王遗传算法的改进[J]. 南京师范大学学报(工程技术版), 2004, 4(3): 53-56.

[15] 姜兰池, 沈国强, 张国煊. 基于HSV 分块颜色直方图的图像检索算法[J]. 机电工程, 2009, 26(11): 54-56.

[16] Violas P, Jones M. Robust real-time objects detection [J]. International Journal of Computer Vision, 2004, 55(2): 137-154.

Outlines

/