Journal of Shanghai University >
GREET-based model for analyzing pollutant emissions characteristic of new energy vehicles
Received date: 2015-11-25
Online published: 2017-10-30
Using an evaluation system of from the well-to-wheel (WTW) and the greenhouse gases, regulated emissions, and energy use in transportation (GREET) model proposed by the Argonne National Laboratory, USA, controlling variables, emissions and energy consumption of both traditional and electric vehicles can be calculated. The WTW calculation methods and GREET model put forward by the U.S. Department of Argonne National Laboratory are used to compare environmental and economic implications of conventional, hybrid, electric and hydrogen fuel cell vehicles in their whole life cycle. Four countries are then compared with different energy structures, differences about electric cars can be seen from energy consumption and emissions. Differences in energy consumption and emission exist in pure electric vehicles between countries using fossil energy and countries using new energy. From the data, it can be concluded that countries using new energy is given priority to develop pure electric vehicles with less emissions. Thus energy and power structures affect the environmental implication of new energy vehicles.
WANG Enci1, FAN Song1, WU Xuebin1, PU Xianjuan2, JIAO Zheng1,2, NIE Yongyou1 . GREET-based model for analyzing pollutant emissions characteristic of new energy vehicles[J]. Journal of Shanghai University, 2017 , 23(5) : 810 -820 . DOI: 10.12066/j.issn.1007-2861.1723
[1] 曾少军. 全球能源与环境现状及前景[C]// 国际经济分析图书与展望(2012—2013). 2013.
[2] 齐慧. 能源结构调整成效显著[N]. 经济日报, 2014.
[3] 中央人民政府网. 国民经济和社会发展第十二个五年规划纲要[EB/OL]. [2014-02-05]. http://www.gov.cn/2011lh/content 1825838.htm.
[4] Ji S G, Cherry C R, Bechle M J, et al. Electric vehicles in China: emissions and health impacts [J]. Environmental Science and Technology, 2012, 46(4): 2018-2024.
[5] Ou X M, Zhang X L, Chang S Y. Alternative fuel buses currently in use in China: life-cycle fossil energy use, GHG emissions and policy recommendations [J]. Energy Policy, 2010, 38(1): 406-418.
[6] 刘宏, 王贺武, 罗茜, 等. 纯电动汽车生命周期3E评价及微型化发展[J]. 交通科技与经济, 2007, 9(6): 45-48.
[7] Huo H, Zhang Q, Wang M W, et al. Environmental implication of electric vehicles in China [J]. Environmental Science and Technology, 2010, 44(13): 4856-4861.
[8] Yao M F, Liu H F, Feng X. The development of low-carbon vehicles in China [J]. Energy Policy, 2011, 39(9): 5457-5464.
[9] 黄颖, 计军平, 马晓明. 基于EIO-LCA模型的纯电动轿车温室气体减排分析[J]. 中国环境科学, 2012, 32(5): 947-953.
[10] 中国环境保护部. 中国2012年环境统计年报[EB/OL]. [2014-05-26]. http://www.zhb.gov.cn/zwgk/hjtj/nb/2012tjnb/.
[11] 古继宝, 亓芳芳, 吴剑琳. 基于Gompertz 模型的中国民用汽车保有量预测[J]. 技术经济, 2010, 29(1): 57-62.
[12] Wang M. The greenhouse gas, regulated emissins, and energy use in transportation (GREET) model [C]// Argonne National Laboratory. 1999.
[13] Zhang H,Wu J X, Shen Z P. Radiative forcing and global warming potential of perfluorocarbons and sulfur hexafluoride [J]. Science China, 2011, 54(5): 764-772.
[14] Lawrence Livermore National Laboratory. Estimated energy use in 2012: 95.1 quads [EB/OL]. [2013-12-31]. https://flowcharts.llnl.gov/.
[15] Energy Information Administration (EIA). Electricity net generation: electric power sector [EB/OL]. [2014-12-30]. http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0804a.
[16] 中国国家统计局. 2012 年中国各省汽车拥有量数据[EB/OL]. [2014-03-05]. http://data.stats.gov.cn/workspace/index;jsessionid=B29779344EA2FD470754BA025DD0B9DA?m=fsnd.
[17] 国网能源研究院. 2011 年国外电力市场化改革分析报告[M]. 北京: 中国电力出版社, 2011: 76.
/
| 〈 |
|
〉 |