Metallurgical Materials

Simplified calculation of shield tunnel’s equivalent bending rigidity

Expand
  • Department of Civil Engineering, Shanghai University, Shanghai 200072, China

Received date: 2013-12-18

  Online published: 2015-02-28

Abstract

Based on the studies of conventional longitudinal equivalent rigidity ratio, the tunnel’s displacement and deformation are calculated using a variable rigidity beam elasticity calculation method. A simplified expression of the tunnel’s longitudinal equivalent rigidity ratio is obtained. The analysis shows that the longitudinal equivalent rigidity ratio is linearly proportional to the number of bolts. At the same time, the longitudinal equivalent rigidity ratio nearly parabolically increases with the increasing of the bolt radius. However, with the increase of segment ring thickness and the segment modulus of elasticity, the longitudinal equivalent rigidity ratio is reducing. Because of the stress concentration caused by the tunnel’s rigidity change, the tunnel longitudinal equivalent bending rigidity and effectiveness of the rigidity reduce with the increasing of depth. The proposed model is more widely applicable and is of reference value for longitudinal stability design of shield tunnels.

Cite this article

HUANG Yan-xiang, ZHANG Meng-xi, LI Lei . Simplified calculation of shield tunnel’s equivalent bending rigidity[J]. Journal of Shanghai University, 2015 , 21(1) : 106 -116 . DOI: 10.3969/j.issn.1007-2861.2014.01.036

References

[1] 黄茂松, 张治国, 王卫东, 等. 软土盾构隧道施工的环境土工效应[J]. 湖南大学学报: 自然科学版, 2008, 35(11): 81-87.

[2] Chehade F H, Shahrour I. Numerical analysis of the interaction between twin-tunnels: influence of the relative position and construction procedure [J]. Tunneling and Underground Space Technology, 2008, 23(2): 210-214.

[3] 田敬学, 张庆贺. 盾构法隧道的纵向刚度计算方法[J]. 中国市政工程, 2001(3): 35-37.

[4] 黄宏伟, 徐凌, 严佳梁, 等. 盾构隧道横向刚度有效率研究[J]. 岩土工程学报, 2006, 28(1): 11-18.

[5] Lee K M, Ge X W. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure [J]. Journal of Canadian Geotechnical Engineering, 2001, 38(3): 461-483.

[6] 钟小春, 张金荣, 秦建设, 等. 盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J]. 岩土力学, 2011, 32(1): 132-136.

[7] 郑永来, 韩文星, 童琪华, 等. 软土地铁隧道纵向不均匀沉降导致的管片接头环缝开裂研究[J]. 岩石力学与工程学报, 2005, 24(24): 4552-4558.

[8] 韦凯, 宫全美, 周顺华, 等. 隧道长期不均匀沉降预测的蚁群算法[J]. 同济大学学报: 自然科学版, 2009, 37(8): 993-998.

[9] Koyama Y. Present status and technology of shield tunneling method in Japan [J]. Tunneling and Underground Space Technology, 2003, 18(2): 145-149.
[10] 张治国, 黄茂松, 王卫东. 层状地基中隧道开挖对临近既有隧道的影响分析[J]. 岩土工程学报, 2009, 31(4): 600-608.

[11] 叶飞, 何川, 朱合华, 等. 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 33(12): 1870-1876.

[12] 张文杰, 徐旭, 张孟喜, 等. 广义的盾构隧道纵向等效连续化模型研究[J]. 岩石力学与工程学报, 2009, 28(S2): 3938-3944.

[13] 朱先奎. 任意变刚度梁变形的通用方程[J]. 力学与实践, 1993, 15(3): 58-60.

[14] 严佳梁. 盾构隧道管片接头性态研究[D]. 上海: 同济大学, 2006.
Outlines

/