Metallurgical Materials

Impacts on geochemical phases of nitrogen and phosphorus in sediments of Xinanjiang River by river impounding

Expand
  • School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

Received date: 2013-12-13

  Online published: 2015-02-28

Abstract

The Xinanjiang Reservoir and the related river reaches were investigated. Sediments were collected along the upstream, reservoir backwater area, central reservoir and downstream the dam. The geochemical phases of phosphorus and nitrogen were determined. The results show that the total phosphorus (TP) and total nitrogen (TN) concentrations in backwater area sediments increase by 37.3% and 34.2% respectively as compared to that in upstream sediments, for the reason of sedimentation and aquaculture input. Due to the impacts of impounding, phosphorus and nitrogen concentrations in downstream sediments decrease by 39.5% and 74.1% respectively as compared to that in reservoir sediments. Among the various forms of phosphorus, the ratio of Ca-bound phosphorus (Ca-P) (13.8%∽31.9%) and Fe-bound phosphorus (Fe-P) (11.5%∽26.2%) in total phosphorus were next only to organic phosphorus (OP) (48%∽69%). The organic phosphorus deposited in the backwater area and central reservoir sediments is gradually decomposed and transformed to Fe-P, leading to the variation in phosphorus forms along the river course. Meanwhile, organic nitrogen (ON) is the main form of TN. Its content is low in the upper reaches sediments, and increases rapidly downward toward the central reservoir, but decreases significantly in the downstream sediments. The percentage of the content of ammoniac nitrogen (NH+4 -N) in TN has less changed along the river channel. The results reveal that the presence of dam has an obvious retention effect on phosphorus and nitrogen, which also changes the stoichiometric ratio of nutrients in sediments.

Cite this article

QIAN Hui-jun, GAO Yang, CAO Man, FU Jia-nan, MA Jing, WANG Fu-shun . Impacts on geochemical phases of nitrogen and phosphorus in sediments of Xinanjiang River by river impounding[J]. Journal of Shanghai University, 2015 , 21(1) : 72 -80 . DOI: 10.3969/j.issn.1007-2861.2014.01.031

References

[1] 刘敏, 侯立军, 许世远, 等. 河口滨岸潮滩沉积物-水界面N, P的扩散通量[J]. 海洋环境科学, 2001, 20(3): 19-23.

[2] 李学刚, 宋金明, 李宁, 等. 胶州湾沉积物中氮与磷的来源及其生物地球化学特征[J]. 海洋与湖沼, 2005, 36(6): 562-571.

[3] 宋金明, 李学刚, 邵君波, 等. 南黄海沉积物中氮、磷的生物地球化学行为[J]. 海洋与湖沼, 2006, 37(4): 370-376.
[4] 李卫平, 李畅游, 史小红, 等. 内蒙古乌梁素海氮、磷营养元素分布特征及地球化学环境分析[J]. 资源调查与环境, 2008, 29(2): 131-138.

[5] 黎慧卉, 刘丛强, 汪福顺, 等. 猫跳河流域梯级水库磷的夏季变化特征[J]. 长江流域资源与环境, 2009, 18(4): 368-373.

[6] 刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应——来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4): 384-397.

[7] Catarina M, Wi L W, Samantha B J, et al. Inorganic nitrogen dynamics in intertidal rocky biofilms and sediments of the Douro River Estuary (Portugal) [J]. Estuaries, 2005, 28(4): 592-607.

[8] Wang S R, Jin X C, Jiao L X, et al. Nitrogen fractions and release in the sediments from the shallow lakes in the middle and lower reaches of the Yangtze River area in China [J]. Water Soil and Air Pollution, 2007, 187(1): 5-14.

[9] Zheng G X, Song J M, Sun Y M, et al. Characteristics of nitrogen forms in the surface sediments of southwestern Nansha Trough, South China Sea [J]. Chinese Journal of Oceanology and Limnology, 2008, 26(3): 280-288.

[10] 金相灿, 姜霞, 徐玉慧, 等. 太湖东北部沉积物可溶性氮、磷的季节性变化[J]. 中国环境科学, 2006, 26(4): 409-413.

[11] 孙惠民, 何江, 吕昌伟, 等. 乌梁素海沉积物中有机质和总氮含量分布特征[J]. 应用生态学报, 2006, 17(4): 620-624.

[12] 李福钢. 新安江水库2008年防洪调度效益分析和探讨[J]. 华东电力, 2009, 37(2): 25-34.

[13] Williams J D H, Shear H, Thomas R L. Availability to scenedesmus, quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes [J]. Limnology Oceanography, 1980, 25: 1-11.

[14] Hieltjes A H, Lijklema L. Fractionation of inorganic phosphorus in calcareors sediments [J]. Journal of Environmental Quality, 1980, 8: 130-132.

[15] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments [J]. Limnology Oceanography, 1992, 37: 1460-1482.

[16] Golterman H L. Sediments, modifying and equilibrating factors in the chemistry of freshwater [J]. Verhandlungen des Internationalen Verein Limnologie, 1984, 22: 23-59.

[17] Golterman H L. Differential extraction of sediment phosphates with NTA solutio [J]. Hydrobiology, 1982, 92(1): 683-687.

[18] 朱广伟, 秦伯强, 张路. 长江中下游湖泊沉积物中磷的形态及藻类可利用量[J]. 中国科学: D辑, 2005, 35: 24-32.

[19] 胡凯, 柯鹏振, 吴永红, 等. 高原浅水湖泊沉积物中磷、氮形态化学研究[J]. 长江流域资源与环境, 2005, 14(4): 507-511.

[20] 王雨春, 万国江, 王仕禄, 等. 红枫湖、百花湖沉积物中磷的存在形态研究[J]. 矿物学报, 2000, 20(3): 273-278.

[21] 金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 2版. 北京: 中国环境科学出版社, 1990: 223-229.

[22] 刘家寿, 崔奕波, 刘建康. 网箱养鱼对环境影响的研究进展[J]. 水生生物学报, 1997, 21(2): 174-184.

[23] 唐庆蝉, 姚建良, 杨丽, 等. 网箱养殖对千岛湖水环境的影响[J]. 水生态学杂志, 2009, 2(6): 71-75.
[24] Jensen H S, McGlathery K J, Marino R, et al. Forms and availability of sediment phosphorus in carbonatesand of Bermuda Seagrass Beds [J]. Limnology and Oceanography, 1998, 43(5): 799-810.

[25] 焦荔, 方志发, 朱淑君, 等. 千岛湖网箱养鱼对水质的影响[J]. 环境监测管理与技术, 2007, 19(4): 23-25.

[26] 郑爱榕, 沈海维, 李文权. 沉积物中磷的存在形态及其生物可利用性研究[J]. 海洋学报, 2004, 26(4): 49-57.

[27] 许春雪, 袁建, 王亚平, 等. 沉积物中磷的赋存形态及磷形态顺序提取分析方法[J]. 岩矿测试, 2011, 30(6): 785-794.

[28] 孟春红, 赵冰. 东湖沉积物中氮磷形态分布的研究[J]. 环境科学, 2008, 29(7): 1831-1837.

[29] 吴峰炜, 汪福顺, 吴明红, 等. 滇池、红枫湖沉积物中总磷、分态磷及生物硅形态与分布特征[J]. 生态学杂志, 2009, 28(1): 88-94.

[30] 王雨春, 马梅, 万国江, 等. 贵州红枫湖沉积物磷赋存形态及沉积历史[J]. 湖泊科学, 2004, 16(1): 21-27.

[31] Rydin B J. Phosphorus geochemistry of equatorial pacific sediments [J]. Geochem Cosmoch Acta, 1996, 60(9): 1971-1980.

[32] 蒋柏藩, 沈仁芳. 土壤无机磷的分析研究[J]. 土壤学进展, 1990, 18(1): 1-8.

[33] 傅庆红, 蒋新. 湖泊沉积物中磷的形态分析及其释放研究[J]. 四川环境, 1994, 13(4): 21-24.

[34] Justicd R N N, Eugene T R, et al. Changes in nutrient structure of river dominated coastal waters: stoichiometric nutrient balance and its consequences [J]. Estuarine, Coastal and Shelf Science, 1995, 40: 339-365.
Outlines

/