Communication and Information Engineering

CEUS Image Segmentation of Carotid Arteries Using Multi-scale Fuzzy Clustering and DGVF Model

Expand
  • 1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China; 2. Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Received date: 2013-11-22

  Online published: 2014-10-30

Abstract

Contrast-enhanced ultrasound (CEUS) is of great value for the diagnosis and treatment of vascular diseases. Extraction of carotid arterial contours is important for the measurement of morphological and elastic properties of arteries. Since manually tracing of arterial contours is time-consuming, subjective, and unrepeatable, computer-aided methods are required. However, speckle noise in the CEUS images causes poor robustness and difficult initialization in traditional computer-aided image segmentation methods. This paper integrates multi-scale fuzzy C-means clustering with particle swarm optimization to extract coarse boundaries of carotid arteries. Then boundaries are used as initial contours of the directional gradient vector flow (DGVF) model, and deform them until convergence to get final refined contours. Experimental results on 48 CEUS images from 14 patients show that the proposed method is superior to the traditional method, and can automatically and accurately extract boundaries of carotid arteries in CEUS images.

Cite this article

ZHANG Qi1, HUANG Chun-chun1, HAN Hong2, LI Chao-lun2, WANG Wen-ping2 . CEUS Image Segmentation of Carotid Arteries Using Multi-scale Fuzzy Clustering and DGVF Model[J]. Journal of Shanghai University, 2014 , 20(5) : 633 -644 . DOI: 10.3969/j.issn.1007-2861.2014.01.016

References

[1] 主海文, 刘友军, 曾衍钧. 血管图像分割技术的研究进展[J]. 北京生物医学工程, 2005, 24(2): 155-159.

[2] 邢锦, 何文. 超声造影在颈动脉粥样硬化斑块诊断中的应用[J]. 临床超声医学杂志, 2010, 12(2): 111-116.

[3] 钱华明, 姜波, 钱明, 等. 结合时域信息区域生长算法及其在动脉超声造影图像分割中的应用[J]. 计算机辅助设计与图形学学报, 2011, 23(3): 442-447.

[4] Molinari F, Liboni W, Pavanelli E, et al. Accurate and automatic carotid plaque characterization in contrast enhanced 2D ultrasound images [C]//IEEE EMBS. 2007: 335-338.

[5] Hoogi A, Adam D, Hoffman A, et al. Carotid plaque vulnerability quantification of neovascularization on contrast enhanced ultrasound with histopathologic correlation [J]. American

Journal of Roentgenology, 2011, 196(2): 431-436.

[6] Tauber C, Batatia H, Morin G, et al. Robust B-spline snakes for ultrasound image segmentation [J]. Computers in Cardiology, 2004, 31(1): 325-328.

[7] Tang J, Acton S T. Vessel boundary tracking for intravital microscopy via multiscale gradient vector flow snakes [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(2): 316-324.

[8] Tauber C, Batatia H, Ayache A. Quasi-automatic initialization for parametric active contours [J]. Pattern Recognition Letters, 2010, 31(1): 83-93.

[9] Wang H S, Fei B W. A modified fuzzy C-means classification method using multiscale diffusion filtering scheme [J]. Medical Image Analysis, 2009, 13(2): 193-202.
[10] Yang X F, Fei B W. A MR brain classification method based on multi-scale and multi-block fuzzy C-means [C]//5th International Conference on Bioinformatics and Biomedical Engineering. 2011: 1-4.

[11] Yu J Y, Acton S T. Speckle reducing anisotropic diffusion [J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260-1270.

[12] YuJ H,WangYY. Two dimensional fuzzy clustering for ultrasound image segmentation [C]//1st International Conference on Bioinformatics and Biomedical Engineering. 2007: 599-603.

[13] Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(4): 1907-1916.

[14] Zhang Y, Huang D, Ji M, et al. Image segmentation using PSO and PCM with Mahalanobis distance [J]. Expert Systems with Applications, 2011, 38(7): 9036-9040.

[15] 周驰, 高海兵, 高亮, 等. 粒子群优化算法[J]. 计算机应用研究, 2003, 20(12): 7-11.

[16] Tang J. A multi-direction GVF snake for the segmentation of skin cancer images [J]. Pattern Recognition, 2009, 42(6): 1172-1179.

[17] Sadri A R, Zekri M. Segmentation of dermoscopy images using wavelet networks [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(4): 1134-1141.
Outlines

/