no

Effect of Solid Wall Model on Simulation of Nanoparticle Adsorption in Dissipative Particle Dynamics

Expand
  • Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

Received date: 2013-05-14

  Online published: 2014-06-26

Abstract

Dissipative particle dynamics (DPD) is a powerful tool in mesoscopic flow simulation. Commonly used model of face centered cubic (FCC) wall causes false density fluctuations near the wall. As critical regions of nanoparticle adsorption, this phenomenon cannot be ignored. This paper uses a random wall model in the simulation of nanoparticle adsorption, and compares it with the FCC wall model in the density distribution and nanoparticle adsorption simulation.

Cite this article

HUANG Ru-jia, HU Guo-hui, ZHOU Zhe-wei . Effect of Solid Wall Model on Simulation of Nanoparticle Adsorption in Dissipative Particle Dynamics[J]. Journal of Shanghai University, 2014 , 20(3) : 337 -347 . DOI: 10.3969/j.issn.1007-2861.2013.07.039

References

[1] 周新国, 乜冠贞, 陈论韬, 等. 减小地层水流阻力的增注技术[J]. 石油钻采工艺, 2010, 32(4): 74-77.

[2] 顾春元, 狄勤丰, 沈琛, 等. 疏水纳米颗粒在油层微孔道中的吸附机制[J]. 石油勘探与开发, 2011, 38(1): 84-89.

[3] Morrow T. Overcoming large time and length scale challenges in molecular modeling: a review of atomistic to mesoscale coarse-graining methods [M]. England: CRC Press, 2011: 1-12.

[4] Cranford S, Buehler M J. Coarse-graining parameterzation and multiscale simulation of hierarchical systems. Part 1: theory and model formulation [M]. England: CRC Press, 2011:

13-22.

[5] Hoogerbrugande P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhys Lett, 1992, 19(3): 155-160.

[6] Espanol P, Warren P. Statistical mechanics of dissipative particle dynamics [J]. Europhys Lett, 1995, 30(4): 191-196.

[7] Groot R D, Warren P B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation [J]. J Chem Phys, 1997, 107(11): 4223-4435.

[8] Groot R D. Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants [J]. J Chem Phys, 2003, 118(24): 11265-11277.

[9] Groot R D, Rabone K L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants [J]. Biophysical Journal, 2001, 81: 725-736.

[10] 李振. 微流控芯片中液滴操控的耗散粒子动力学模拟[D]. 上海: 上海大学, 2011.

[11] 李小波, 刘田武, 李树皎, 等. 乳化和润湿反转现象的耗散粒子动力学研究[J]. 石油学报, 2009, 30(2): 259-262.

[12] 陈燕, 钟璟, 黄维秋. 三嵌段共聚物EO20PO70EO20 相分离行为的耗散粒子动力学模拟[J]. 高等学校化学学报, 2010, 31(9): 1821-1833.

[13] Lees A W, Edwards S F. The computer study of transport processes under extreme conditions [J]. Journal of Physics C: Solid State Physics, 1972, 5(15): 1921.

[14] Revenga M, Zuniga I, Espanol P. Boundary model in DPD [J]. International Journal of Modern Physics C, 1998, 9(8): 1319-1328.

[15] Willemsen S M, Hoefsloot H C J, Iedema P D. No-slip boundary condition in dissipative particle dynamics [J]. International Journal of Modern Physics C, 2000, 11(5): 881-890.

[16] Pivkin I V, Karniadakis G E. A new method to impose no-slip boundary conditions in dissipative particle dynamics [J]. Journal of Computational Physics, 2005, 207: 114-128.

[17] Pivkin I V, Karniadakis G E. Controlling density fluctuations in wall-bounded dissipative particle dynamics systems [J]. Physical Review Letters, 2006, 96: 206001.
[18] Sergey L. Particle-layering effect in wall-bounded dissipative particle dynamics [J]. Physical Review E, 2010, 82: 066704.

[19] Liu M B, Meakin P, Huang H. Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks [J]. Physics of Fluids, 2007, 19(3): 033302.

[20] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法[J]. 物理学报, 2010, 59(11): 7556-7563.

[21] Claudio C, Bjorn H, Thomas G I, et al. Dynamic capillary wetting studied with dissipative particle dynamics [J]. New Journal of Physics, 2008, 10: 043009.

[22] Fedosov D A, Pivkin I V, Karniadakis G E. Velocity limit in DPD simulations of wallbounded flows [J]. Journal of Computational Physics, 2008, 227: 2540-2559.

[23] Keaveny E E, Pivkin I V, Maxey M, et al. A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows [J]. J Chem Phys, 2005, 123: 104107.

[24] Lee C K, Hua C C. Nanoparticle interaction potentials constructed by multiscale computation [J]. J Chem Phys, 2010, 132: 224904.

[25] Laradji M. Nanospheres in phase-separating multicomponent fluids: a three-dimensional dissipative particle dynamics simulation [J]. J Chem Phys, 2004, 121(21): 10641-10647.

[26] Shi B, Dhir V K. Molecular dynamics simulation of the contact angle of liquids on solid surfaces [J]. J Chem Phys, 2009, 130: 034705.
Outlines

/