Composite Materials

Manufacturing of CMCs by Chemical Vapor Infiltration Process

Expand
  • Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2013-12-20

  Online published: 2014-02-28

Abstract

This paper reviews the development trends, and flexible, robust and toughness control and design in the simulation and visualization of ceramic matrix composites (CMCs) manufacturing by chemical vapor infiltration (CVI) process. The gaseous route involves gas transfer, reaction thermodynamics and kinetics, and pore structure modeling, which is a typical multi-scale and multi-physics problem. Quantum chemistry, chemical thermodynamics, microscopic kinetics, finite element, the level-set and artificial intelligence methods are applied to achieve densification process simulation and composition analysis of composite materials, accurately reflect anisotropy of gas transfer in the porous preform and the deposition process, and provide more accurate control parameters for process optimization. CVI is a flexible and robust process for manufacturing CMCs. It has extensive applications and abilities in process control, adjustment, design, assemble, error-correction andcompatibility. It is suitable for microstructure control of CMCs, and is the most advanced
fundamental method for manufacturing CMCs. Strength and toughness are the core issues for CMCs, including coordination of the moduli among reinforcement fibers, matrix and inter-phases, residual thermal stresses control, and the volume fraction design for both the matrix and the fibers. Tough CMCs can be manufactured with reasonable control and design of these parameters so as to meet the requirements under different environmental
conditions.

Cite this article

CHENG Lai-fei, ZHANG Li-tong, MEI Hui, LIU Yong-sheng, ZENG Qing-feng . Manufacturing of CMCs by Chemical Vapor Infiltration Process[J]. Journal of Shanghai University, 2014 , 20(1) : 15 -32 . DOI: 10.3969/j.issn.1007-2861.2013.07.049

References

[1] Evans A G. Perspective on the development of high toughness ceramics [J]. J Am Ceram Soc, 1990, 73(2): 187-206.

[2] 张立同, 成来飞, 徐永东, 等. 自愈合碳化硅陶瓷基复合材料研究及应用进展[J]. 航空材料学报, 2006, 26(3): 226-232.

[3] Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview [J]. Compos Sci Technol, 2004, 64(2): 155-170.

[4] Naslain R. CVI composites [M]//Warren R. Ceramic Matrix Composite. London: Chapman and Hall, 1992: 199-243.

[5] Pierson H O. Handbook of chemical vapor deposition (CVD) principles, technology, and applications [M]. 2nd ed. New York: Noyes Publications Press, 1999: 25-27.

[6] 尹洪峰. LPCVI-C/SiC复合材料的结构和性能的研究[D]. 西安: 西北工业大学, 2000.

[7] 李顺林. 复合材料进展[M]. 北京: 航空工业出版社, 1994: 11-16.

[8] Dimitrios I, Anthony M, Donald R, et al. Complex flow phenomena in vertical MOCVD reactors: effect on deposition uniformity and interface abruptness [J]. J Crystal Growth, 1987,

85(1/2): 154.

[9] Hitoshi H, Masatake K, Manabu S, et al. Numerical evaluation of silicon-thin film growth from SiHCl3-H2 gas mixture in a horizontal chemical vapor deposition reactor [J]. Jap J Appl

Phys, 1994, 33(4): 1977-1985.

[10] Gupte S M, Tsamopoulos J A. Densification of porous materials by chemical vapor infiltration [J]. J Electrochem Soc, 1989, 136(2): 555-561.

[11] Tai N H, Chou T W. Modeling of an improved chemical vapor infiltration process for ceramic composites fabrication [J]. J Am Ceram Soc, 1990, 73(6): 1489-1498.

[12] Robert P, Steven M. Time-dependent solution to the Tai-Chou chemical vapor infiltration model [J]. J Am Ceram Soc, 1990, 73(6): 1758-1759.

[13] Brian W, Besmann T. Reaction and diffusion kinetics during the initial stages of isothermal chemical vapor infiltration [J]. J Am Ceram Soc, 1991, 74(12): 3046-3053.

[14] McAllister P. Simulation of a multiple substrate reactor for chemical vapor infiltration of pyrolytic carbon within carbon-carbon composites [J]. AIChE J, 1993, 39(7): 1196-1198.

[15] Starr T L. Transport model for chemical vapor infiltration [J]. J Mater Res, 1995, 10(9): 2360-2366.

[16] 王军. CVI过程的实验模拟和数值计算[D]. 西安: 西北工业大学, 1999.

[17] Li K, Li H, Jiang K, et al. Numerical simulation of isothermal chemical vapor infiltration process in fabrication of carbon-carbon composites by finite element method [J]. Science in China: Series E, 2000, 43(1): 77-85.
[18] 姜开宇, 李贺军, 侯向辉, 等. 碳基及陶瓷基复合材料CVI工艺数值模拟的相关数学模型[J]. 宇航材料工艺, 1999(3): 42-45.

[19] 李爱军, 李贺军, 李克智, 等. C/C复合材料CVI工艺人工神经网络建模[J]. 中国科学: E辑, 2003, 33(3): 209-216.

[20] Wei X, Cheng L, Zhang L, et al. Numerical simulation for fabrication of C/SiC composites in isothermal CVI reactor [J]. Comp Mater Sci, 2006, 38(2): 245-255.

[21] Guan K, Cheng L F, Zeng Q F. Modeling of pore structure evolution between bundles of plain woven fabrics during chemical vapor infiltration process: the influence of preform geometry [J]. J Am Ceram Soc, 2013, 96(1): 51-61.

[22] Guan K, Cheng L F, Zeng Q F, et al. Modeling of pore structure evolution within the fiber bundle during chemical vapor infiltration process [J]. Chem Eng Sci, 2011, 66(23): 5852-5861.

[23] 曾庆丰. C/SiC复合材料优化设计[D]. 西安: 西北工业大学, 2004: 47-50.

[24] 朱庆山, 邱学良, 马昌文. 化学气相沉积制备SiC涂层—Ⅰ. 热力学研究[J]. 化工冶金, 1998, 19(3): 193-198.

[25] 朱庆山, 邱学良, 马昌文. 化学气相沉积制备SiC涂层—Ⅱ. 动力学研究[J]. 化工冶金, 1998, 19(4): 289-292.

[26] 肖鹏, 徐永东, 黄伯云. 沉积条件对CVD-SiC沉积热力学与形貌的影响[J]. 无机材料学报, 2002, 17(4): 877-881.

[27] 焦桓, 周万城. CVD法快速制备SiC过程分析[J]. 西北工业大学学报, 2001, 19(2): 165-168.

[28] Minato K, Fukuda K. Structure of chemically vapor deposited silicon carbide for coated fuel particles [J]. J Mater Sci, 1988, 23(2): 699.

[29] 陈卫武, 邹宗树, 王天明. CVD法合成SiC晶须的实验研究[J]. 金属学报, 1997, 33(6): 643-649.

[30] 徐志淮, 李贺军, 李克智. SiC-CVD过程的人工神经网络建模[J]. 硅酸盐学报, 2000, 28(1): 25-29.

[31] 徐志淮, 李贺军. CVD生长SiC涂层工艺过程的正交分析研究[J]. 兵器材料科学与工程, 2000, 23(5): 35-40.

[32] Yun J, Dandy S. Model of morphology evolution in the growth of polycristalline -SiC films [J]. Diam Relat Mater, 2000, 9(3): 439-445.

[33] Papasouliotis G D, Sotirchos S V, Mountziaris T J, et al. Heterogeneous kinetic modelling of the deposition of silicon carbide through MTS [C]//Gas-Phase and Surface Chemistry in Electronic Materials Processing. 1994: 111-116.

[34] Tsai C Y, Desu S B, Chiu C C. Kinetic study of silicon carbide deposited from methyltrichlorosilane precursor [J]. J Mater Res, 1994, 9(1): 104-111.

[35] Loumagne F, Langlais F, Naslain R. Physicochemical properties of SiC-based ceramics deposited by low pressure chemical vapor deposition from CH3SiCl3-H2 [J]. Thin Solid Films, 1995, 254(1/2): 75-82.

[36] Loumagne F, Langlais F, Naslain R. Experimental kinetic study of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor [J]. J Crystal Growth, 1995, 155(3/4): 198-204.

[37] Loumagne F, Langlais F, Naslain R. Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor [J]. J Crystal Growth, 1995, 155(3/4): 205-213.
[38] Lackey W J, Vaidyaraman S, Beckloff B N. Mass transfer and kinetics of the chemical vapor deposition of SiC onto fibers [J]. J Mater Res, 1998, 13(8): 2251-2261.

[39] Wang X, Su K H, Deng J L, et al. Initial decomposition of methyltrichlorosilane in the chemical vapor deposition of silicon-carbide [J]. Comput Theor Chem, 2011, 967(2): 265-272.

[40] Zeng Q F, Su K H, Zhang L T, et al. Evaluation of the thermodynamic data of CH3SiCl3 based on quantum chemistry calculations [J]. J Phys Chem Ref Data, 2006, 35(3): 1385-1390.

[41] Yao X P, Su K H, Deng J L, et al. Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis [J]. Comp Mater Sci, 2007, 40(4): 504-524.

[42] Qu Y N, Su K, Wang X, et al. Reaction pathways of propene pyrolysis [J]. J Comp Chem, 2010, 31(7): 1421-1442.

[43] Deng J L, Su K H, Zeng Q F, et al. Thermodynamics of the production of condensed phases in the CVD of methyltrichlorosilane pyrolysis [J]. Chem Vapor Depos, 2009, 15(10/11/12): 281-290.

[44] 王福贞, 马文存. 气相沉积应用技术[M]. 北京: 机械工业出版社, 2006: 16-17.

[45] 陈照峰. Al2O3-SiO2系氧化物的CVD(CVI)过程机理及工艺探索[D]. 西安: 西北工业大学, 2002: 23-118.

[46] 陈照峰, 张立同, 成来飞, 等. MOCVI制备Nextel 720/SiO2复合材料[J]. 航空材料学报, 2001, 21(1): 13-17.

[47] 陈照峰, 张立同, 成来飞, 等. 常压化学气相渗透制备Nextel 480/SiO2复合材料[J]. 西北工业大学学报, 2001, 19(4): 659-661.

[48] 陈照峰, 张立同, 成来飞, 等. PIP结合CVI制备氧化铝-莫来石陶瓷基复合材料[J]. 无机材料学报, 2003, 18(3): 638-644.

[49] Han G F, Zhang L T, Cheng L F. Processing and performance of 2D fused-silica fiber reinforced porous Si3N4 matrix composites [J]. J Univ Sci Technol B, 2008, 15(1): 58-61.

[50] 韩桂芳. CVI法制备连续纤维增强氮化硅陶瓷基复合材料的工艺基础[D]. 西安: 西北工业大学, 2008: 35-118.

[51] Cheng Y, Yin X W, Liu Y S, et al. BN coatings prepared by low pressure chemical vapor deposition using boron trichloride-ammonia-hydrogen-argon mixture gases [J]. Surf Coat Technol, 2010, 204(16/17): 2797-2802.

[52] 程瑜. CVD/CVI法制备六方氮化硼的工艺基础及性能研究[D]. 西安: 西北工业大学, 2010: 30-42.

[53] Liu Y S, Zhang L T, Cheng L F, et al. Effect of deposition temperature on boron-doped carbon coatings deposited from a BCl3-C3H6-H2 mixture using low pressure chemical vapor deposition [J]. Appl Surf Sci, 2009, 255(21): 8761-8768.

[54] Zeng B, Feng Z D, Li S W, et al. Microstructure and deposition mechanism of CVD amorphous boron carbide coatings deposited on SiC substrates at low temperature [J]. Ceram Int, 2009, 35(5): 1877-1882.

[55] Liu Y S, Zhang L T, Cheng L F, et al. Preparation and oxidation protection of CVD SiC/a-BC/SiC coatings for 3D C/SiC composites [J]. Corros Sci, 2009, 51(4): 820-826.

[56] Liu Y S, Cheng L F, Zhang L T, et al. Fracture behavior and mechanism of 2D C/SiC-BCx composite at room temperature [J]. Mater Sci and Eng: A, 2011, 528(3): 1436-1441.
[57] Liu Q M, Zhang L T, Cheng L F, et al. Chemical vapour deposition of zirconium carbide and silicon carbide hybrid whiskers [J]. Mater Lett, 2010, 64: 552-554.

[58] Wang Y G, Liu Q M, Liu J L, et al. Deposition mechanism for chemical vapor deposition of zirconium carbide coatings [J]. J Am Ceram Soc, 2008, 9: 1249-1252.

[59] Liu X F, Zhang L T, Liu Y S, et al. Microstructure and the dielectric properties of SiCN-Si3N4 ceramics fabricated via LPCVD/CVI [J]. Ceram Int, 2014, 40(3): 5097-5102.

[60] Ye F, Zhang L T, Yin X W, et al. SiCN-based composite ceramics fabricated by chemical vapor infiltration with excellent mechanical and electromagnetic properties [J]. Mater Lett, 2013, 111(15): 169-172.

[61] Xue J M, Yin X W, Ye F, et al. Thermodynamic analysis on the co-deposition of SiC-Si3N4 composite ceramics by chemical vapor deposition using SiCl4-NH3-CH4-H2-Ar mixture gases [J]. J Am Ceram Soc, 2013, 96(3): 979-986.

[62] Liu X F, Zhang L T, Liu Y S, et al. Thermodynamic calculations on the chemical vapor deposition of SiCN from the SiCl4-NH3-C3H6-H2-Ar system [J]. Ceram Int, 2013, 39(4): 3971-

3977.

[63] Zuo X Z, Zhang L T, Liu Y S, et al. Oxidation behaviour of two-dimensional C/SiC modified with self-healing Si―B―C coating in static air [J]. Corros Sci, 2012, 65: 87-93.

[64] Zuo X Z, Zhang L T, Liu Y S, et al. Effect of deposition temperature on dynamics and mechanism of deposition for Si―B―C ceramic from BCl3/SiCH3Cl3/H2 precursor [J]. J Mater

Sci Technol, 2012, 28(9): 793-798.

[65] 李赞. CVD/CVI法制备SiBN界面的工艺优化[D]. 西安:西北工业大学, 2014: 14-22.

[66] 韩秀峰, 张立同, 成来飞, 等. 基体改性对碳纤维增韧碳化硅复合材料结构与性能的影响[J]. 硅酸学报, 2006, 34(7): 871-874.

[67] 童巧英. C/SiC复合材料及其与金属间的集成连接[D]. 西安: 西北工业大学, 2008: 44-153.

[68] 童巧英, 成来飞, 张立同. C/SiC复合材料与Nb的液相渗透连接[J]. 航空材料学报, 2004, 24(1): 53-56.

[69] 童巧英, 成来飞, 张立同. 三维C/SiC复合材料在线液相渗透连接[J]. 稀有金属材料与工程, 2004(1): 101-104.

[70] Tong Q Y, Cheng L F. Liquid infiltration joining of 2D C/SiC composite [J]. Sci Eng Compos Mater, 2006, 13(1): 31-36.

[71] 柯晴青, 成来飞, 童巧英, 等. 连续纤维增韧陶瓷基复合材料的连接方法[J]. 材料工程, 2005, 11: 58-63.

[72] 柯晴青. C/SiC复合材料螺栓螺母的制备及性能研究[D]. 西安: 西北工业大学, 2008: 13-55.

[73] 童长青. C/SiC复合材料基体改性工艺方法、结构与性能[D]. 西安: 西北工业大学, 2007: 30-103.

[74] 时凤鸣. 原位自生SiB4改性C/SiC复合材料的制备及性能研究[D]. 西安: 西北工业大学, 2010: 45-78.

[75] Shi F M, Yin X W, Fan X M, et al. A new route to fabricate SiB4 modified C/SiC composites [J]. J Eur Ceram Soc, 2010, 30(9): 1955-1962.

[76] Morscher G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced meltinfiltrated SiC matrix composites [J]. Compos Sci Technol, 2004, 64: 1311-1319.
Outlines

/