Mathematics.Physics and Chemistry

Stability of q-Dual Aleksandrov-Fenchel Inequality

Expand
  • College of Sciences, Shanghai University, Shanghai 200444, China

Received date: 2012-06-05

  Online published: 2013-04-30

Abstract

This paper provides three important stability versions of geometric inequalities from dual Brunn-Minkowski theory. They are stabilities of dual Minkowski inequality and dual isoperimetric inequality between dual mixed volume, and stability of q-dual Aleksandrov-Fenchel inequality between q-dual mixed volume.

Cite this article

LIU Qi-xia . Stability of q-Dual Aleksandrov-Fenchel Inequality[J]. Journal of Shanghai University, 2013 , 19(2) : 154 -159 . DOI: 10.3969/j.issn.1007-2861.2013.02.009

References

[1] Minkowski H. Volumen und oberfl¨ache [J]. Math Ann, 1903, 57: 447-495.

[2] Bounesen T. Probl`emes des isop´erim`etres de is´epiphanes [M]. Paris: Gauthier-Villars, 1929.

[3] Groemer H. Stability of geometric inequalities [M]//Gruber P M, Wills J M. Handbook of Convexity. Amsterdam: Elsevier Science Publishers, 1993: 125-150.

[4] Gardner R J, Vassallo S. Inequalities for dual isoperimetric deficits [J]. Mathematika, 1998, 45:269-285.

[5] Koldobsky A. Stability of volume comparison for complex convex bodies [J]. Arch Math, 2011, 97: 91-98.

[6] Ball K M, B¨or¨oczky K J. Stability of some versions of the Pr´ekopa-Leindler inequality [J]. Monatsh Math, 2011, 163: 1-14.

[7] B¨or¨oczky K J. Stability of the Blaschke-Santal´o  and the affine isoperimetric inequality [J]. Adv Math, 2010, 225: 1914-1928.

[8] Schneider R. Stability in the Aleksandrov-Fenchel-Jessen theorem [J]. Mathematika, 1989, 36: 50-59.

[9] Schneider R. A stability estimate for the Aleksandrov-Fenchel inequality with an application to mean curvature [J]. Manuscripta Math, 1990, 69: 291-300.

[10] 何斌吾, 李小燕, 冷岗松. 对偶Aleksandrov-Fenchel 不等式的稳定性[J]. 数学学报, 2005, 48(6): 1071-1078.

[11] 马统一.混合投影体的极与混合相交体的Aleksandrov-Fenchel 不等式的稳定性[J]. 数学物理学报, 2009, 29A(6): 1750-1764.

[12] Schneider R. Conver bodies: the Brunn-Minkowski theory [M]. Cambridge: Cambridge University Press, 1993.

[13] Lutwak E. Dual mixed volumes [J]. Pacific J Math, 1975, 58: 531-538.
[14] Gardner R J. Geometric tomography [M]. Cambridge: Cambridge University Press, 2006: 16-22.

[15] Groemer H. On the Brunn-Minkowski theorem [J]. Geom Dedicata, 1988, 27: 357-371.

[16] Groemer H. On an inequality of Minkowski for mixed volumes [J]. Geom Dedicata, 1990, 33: 117-122.

[17] Gardner R J, Vassallo S. Stability of inequalities in the dual Brunn-Minkowski theory [J]. J Math Anal Appl, 1999, 231: 568-587.

[18] Zhao C J. Lp-mixed intersection bodies [J]. Science in China: Series A, 2008, 51(10): 1380-1395.

[19] Zhao C J, Cheung W S. Lp-mixed intersection bodies and star duality [J]. Proc Indian Acad Sci, 2010, 120(4): 429-440.
Outlines

/