Journal of Shanghai University >
Activation mechanism of the effect of Ca on oxygen vacancy diffusion in grain boundary of alpha-Al2O3
Received date: 2017-03-03
Online published: 2020-09-03
The formation energy and diffusion barrier of oxygen vacancies (VO) were calculated using the first-principles density functional theory method, for the case of Ca segregated in the ∑3(1010) grain boundary of $\alpha alpha-Al2O3. The formation energy of Vo fell in the 3.05~4.04 eV range in the Ca doped grain boundary. This was roughly 2.5 eV lower than the undoped grain boundary. The activation energy of VO in the Ca-doped grain boundary changed to 2.30 eV, 1.8 eV less than the undoped grain boundary's maximum. Moreover, with the increase in the concentration of Ca, the crystal lattice near the grain boundary underwent significant expansion, further breaking the balance of charge. Therefore, the formation energy of VO was further reduced to -1.43 eV, and the diffusion activation energy was reduced to 1.27 eV. Thus, Ca doping proved advantageous in the formation and diffusion of VO in the grain boundary of $\alpha alpha-Al2O3.
Key words: alumina oxide; grain boundary; doping; first-principles
MA Shuai, LI Yonghua, GAO Yubo . Activation mechanism of the effect of Ca on oxygen vacancy diffusion in grain boundary of alpha-Al2O3[J]. Journal of Shanghai University, 2020 , 26(4) : 562 -569 . DOI: 10.12066/j.issn.1007-2861.2220
| [1] | Buban J P, Matsunaga K, Chen J, et al. Grain boundary strengthening in alumina by rare earth impurities[J]. Science, 2006,311(5758):212-215. |
| [2] | Nakagawa T, Sakaguchi I, Shibata N, et al. Yttrium doping effect on oxygen grain boundary diffusion in $\alpha $-Al$_{2}$O$_{3}$[J]. Acta Materialia, 2007,55(19):6627-6633. |
| [3] | 赵介南, 张宁, 周彬彬, 等. Al$_{2}$O$_{3}$ 基陶瓷材料的增韧研究进展[J]. 硅酸盐通报, 2016,35(9):2866-2871. |
| [4] | Lagerlof K D, Grimes R. The defect chemistry of sapphire ($\alpha $-Al$_{2}$O$_{3}$)[J]. Acta Materialia, 1998,46(16):5689-5700. |
| [5] | Matsunaga K, Tanaka T, Yamamoto T, et al. First-principles calculations of intrinsic defects in Al$_{2}$O$_{3}$[J]. Physical Review B, 2003,68(8):085110. |
| [6] | Aschauer U, Bowen P, Parker S C. Oxygen vacancy diffusion in alumina: new atomistic simulation methods applied to an old problem[J]. Acta Materialia, 2009,57(16):4765-4772. |
| [7] | Lei Y, Gong Y, Duan Z, et al. Density functional calculation of activation energies for lattice and grain boundary diffusion in alumina[J]. Physical Review B, 2013,87(21):214105. |
| [8] | Tewari A, Aschauer U, Bowen P. Atomistic modeling of effect of Mg on oxygen vacancy diffusion in $\alpha $-alumina[J]. Journal of the American Ceramic Society, 2014,97(8):2596-2601. |
| [9] | Reed D J, Wuensch B J. Ion-probe measurement of oxygen self-diffusion insingle-crystal Al$_{2}$O$_{3}$[J]. Journal of the American Ceramic Society, 1980,63(1/2):88-92. |
| [10] | Clemens D, Bongartz K, Quadakkers W, et al. Determination of lattice and grain boundary diffusion coefficients in protective alumina scales on high temperature alloys using SEM, TEM and SIMS[J]. Fresenius Journal of Analytical Chemistry, 1995,353(3/4):267-270. |
| [11] | Prot D, Monty C. Self-diffusion in $\alpha $-Al$_{2}$O$_{3}$.Ⅱ. oxygen diffusion in 'undoped' single crystals[J]. Philosophical Magazine A, 1996,73(4):899-917. |
| [12] | Nakagawa T, Nakamura A, Sakaguchi I, et al. Oxygen pipe diffusion in sapphire basal dislocation[J]. Journal of the Ceramic Society of Japan, 2006,114(1335):1013-1017. |
| [13] | Heuer A. Oxygen and aluminum diffusion in $\alpha $-Al$_{2}$O$_{3}$: how much do we really understand?[J]. Journal of the European Ceramic Society, 2008,28(7):1495-1507. |
| [14] | Altay A, Gulgun M. Microstructural eVolution of calcium-doped $\alpha $-alumina[J]. Journal of the American Ceramic Society, 2003,86(4):623-629. |
| [15] | Jung J, Baik S. Abnormal grain growth of alumina: CaO effect[J]. Journal of the American Ceramic Society, 2003,86(4):644-649. |
| [16] | Dillon S J, Harmer M P. Relating grain-boundary complexion to grain-boundary kinetics I: Calcia-doped alumina[J]. Journal of the American Ceramic Society, 2008,91(47):2304-2313. |
| [17] | Akiva R, Berner A, Kaplan D. The solubility limit of CaO in $\alpha $-Alumina at 1 600 $^\circ$C[J]. Journal of the American Ceramic Society , 2013,96(10):3258-3264. |
| [18] | Shinagawa K, Maki S, Yokota K. Phase-field simulation of plate-like grain growth during sintering of alumina[J]. Journal of the European Ceramic Society, 2014,34(12):3027-3036. |
| [19] | Fabris S, Elsasser C. First-principles analysis of cation segregation at grain boundaries in $\alpha $-Al$_{2}$O$_{3}$[J]. Acta Materialia, 2003,51(1):71-86. |
| [20] | Ogawa T, Kuwabara A, Fisher C J, et al. A density functional study of vacancy formation in grain boundaries of undoped alpha-alumina[J]. Acta Materialia, 2014,69:365-371. |
| [21] | Coleman S, Spearot D. Atomistic simulation and virtual diffraction characterization of homophase and heterophase alumina interfaces[J]. Acta Materialia, 2015,82:403-413. |
| [22] | Fabris S, Nufer S, Elsasser C, et al. Prismatic $\Sigma$3(10$\overline 1$0) twin boundary in $\alpha $-Al$_{2}$O$_{3}$ investigated by density functional theory and transmission electron microscopy[J]. Physical Review B, 2002,66(15):155415. |
| [23] | Wang F, Lai W, Li R, et al. Interactions between vacancies and prismatic $\Sigma$3 grain boundary in $\alpha $-Al$_{2}$O$_{3}$: first principles study[J]. Chinese Physics B, 2016,25(6):066804. |
| [24] | Bl?chl P E. Projector augmented-wave method[J]. Physical Review B, 1994,50(24):17953-17979. |
| [25] | Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999,59(3):1758-1775. |
| [26] | Kresse G, Furthmulle J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996,6(1):15-50. |
| [27] | Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992,45(23):13244-13249. |
| [28] | D'Amour H, Schiferl D, Denner W, et al. High-pressure single-crystal structure determinations for ruby up to 90 kbar using an automatic diffractometer[J]. Journal of Applied Physics, 1978,49(8):4411-4416. |
| [29] | Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976,13(12):5188-5192. |
| [30] | Henkelman G, Uberuaga B P, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. Journal of Chemical Physics, 2000,113(22):9901-9904. |
| [31] | Akiva R, Katsman A, Kaplan W D. Anisotropic grain boundary mobility in undoped and doped alumina[J]. Journal of the American Ceramic Society, 2014,97(5):1610-1618. |
/
| 〈 |
|
〉 |