[1] |
Gao Z, Dai L L, Wang Z C , et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[J]. IEEE Transactions on Signal Processing, 2015,63(23):6169-6183.
|
[2] |
Rao X B, Lau V K N . Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2014,62(12):3261-3271.
doi: 10.1109/TSP.2014.2324991
|
[3] |
Li W C, Preisig J C . Estimation of rapidly time-varying sparse channels[J]. IEEE Journal of Oceanic Engineering, 2010,32(4):927-939.
|
[4] |
Byun S H, Seong W, Kim S M . Sparse underwater acoustic channel parameter estimation using a wideband receiver array[J]. IEEE Journal of Oceanic Engineering, 2013,38(4):718-729.
|
[5] |
Zhang Z L, Jung T P, Makeig S , et al. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning[J]. IEEE Transactions on Biomedical Engineering, 2013,60(2):300-309.
pmid: 23144028
|
[6] |
Friedlander M P, Mansour H, Saab R , et al. Recovering compressively sampled signals using partial support information[J]. IEEE Transactions on Information Theory, 2012,58(2):1122-1134.
|
[7] |
Boyd S, Parikh N, Chu E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011,3(1):1-122.
|
[8] |
Yang J, Zhang Y . Alternating direction algorithms for $l_1 $-problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2011,33(1):250-278.
|
[9] |
Tropp J A, Gilbert A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2008,53(12):4655-4666.
|
[10] |
Rao X B, Lau V K N . Compressive sensing with prior support quality information and application to massive MIMO channel estimation with temporal correlation[J]. IEEE Transactions on Signal Processing, 2015,63(18):4914-4924.
|
[11] |
Chartrand R . Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007,14(10):707-710.
|
[12] |
Chartrand R . Shrinkage mappings and their induced penalty functions[C] // IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2014: 1026-1029.
|
[13] |
Woodworth J, Chartrand R . Compressed sensing recovery via nonconvex shrinkage penalties [EB/OL]. ( 2016- 07- 01)[2018-06-25]. http://arxiv.org/abs/1504.02923, 11 Apr 2015.
|
[14] |
Beck A, Teboulle M . A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009,2(1):183-202.
|
[15] |
Hong M Y, Razaviyayn M, Luo Z Q , et al. A unified algorithmic framework for block-structured optimization involving big data: with applications in machine learning and signal processing[J]. IEEE Signal Processing Magazine, 2016,33(1):57-77.
|
[16] |
Zhang S B, Qian H, Zhang Z H . A nonconvex approach for structured sparse learning [EB/OL]. ( 2016- 07- 01) [2018-06-27]. http://dearxiv.org/pdf/1503.02164.
|
[17] |
Wipf D P, Rao B D, Nagarajan S . Latent variable Bayesian models for promoting sparsity[J]. IEEE Transactions on Information Theory, 2011,57(9):6236-6255.
|
[18] |
Zhang Z L, Rao B D . Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013,61(8):2009-2015.
|
[19] |
Prasad R, Murthy C R, Rao B D . Joint approximately sparse channel estimation and data detection in OFDM systems using sparse Bayesian learning[J]. IEEE Transactions on Signal Processing, 2014,62(14):3591-3603.
|
[20] |
Zhang Z L, Rao B D . Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011,5(5):912-926.
|
[21] |
Gao H Y . Wavelet shrinkage denoising using the non-negative garrote[J]. Journal of Computational and Graphical Statistics, 1998,7(4):469-488.
|
[22] |
Ochs P, Dosovitskiy A, Brox T , et al. On iteratively reweighted algorithms for non-smooth non-convex optimization in computer vision[J]. SIAM Journal on Imaging Sciences, 2015,8(1):331-372.
|
[23] |
Rockafellar R T, Wets R J B . Variational analysis[M]. Berlin: Springer Science & Business Media, 2009: 422-423.
|
[24] |
Lyu Q, Lin Z C, She Y Y , et al. A comparison of typical $l_p $ minimization algorithms[J]. Neurocomputing, 2013,119:413-424.
|
[25] |
Beygi S, Ström E G, Mitra U . Structured sparse approximation via generalized regularizers: with application to V2V channel estimation[C] // IEEE Global Communications Conference. 2014: 3013-3018.
|