[1] Gallager R G. Low-density parity-check codes [J]. Information Theory, 1962, 8(1): 21-28.
[2] Kou Y, Lin S, Fossorier M. Low-density parity-check codes based on finite geometries: a rediscovery and new results [J]. Information Theory, 2001, 47(7): 2711-2736.
[3] Zhang J, Fossorier M P C. A modified weighted bit-flipping decoding of low-density paritycheck codes [J]. Communications Letters, 2004, 8(3): 165-167.
[4] Jiang M, Zhao C, Shi Z, et al. An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes [J]. Communications Letters, 2005, 9(9): 814-816.
[5] Wadayama T, Nakamura K, Yagita M, et al. Gradient descent bit flipping algorithms for decoding LDPC codes [J]. Communications, 2010, 58(6): 1610-1614.
[6] Chen T C. Adaptive-weighted multibit-flipping decoding of low density parity-check codes based on ordered statistics [J]. IET Communications, 2013, 7(14): 1517-1521.
[7] Liu Y H, Niu X L, Zhang M L. Multi-threshold bit flipping algorithm for decoding structured LDPC codes [J]. Communications Letters, 2015, 19(2): 127-130.
[8] Torshizi E O, Sharifi H, Seyrafi M. A new hybrid decoding algorithm for LDPC codes based on the improved variable multi weighted bit-flipping and BP algorithms [C]// 2013 21st Iranian Conference on Electrical Engineering. 2013: 1-6.
[9] Torshizi E O, Sharifi h, Daneshgar A, et al. A new hybrid decoding algorithm based on multi-dimensional searching for regular LDPC codes in finite geometries [C]// 2014 22nd Iranian Conference on Electrical Engineering. 2014: 1471-1476.
[10] Lin S, Costello D J. Error control coding: fundamentals and applications [J]. Prentice-Hall Computer Applications in Electrical Engineering Series, 1983, 25(1): 4-12. |