Journal of Shanghai University(Natural Science Edition) ›› 2022, Vol. 28 ›› Issue (1): 1-18.doi: 10.12066/j.issn.1007-2861.2350
• Invited Review • Next Articles
Received:
2021-11-26
Online:
2022-02-28
Published:
2022-03-02
Contact:
WU Minghong
E-mail:mhwu@staff.shu.edu.cn
CLC Number:
JIAO Zheng, WU Minghong. Research progress on catalytic oxidation for the removal of volatile organic compounds[J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(1): 1-18.
[1] | Wu X Q, Han R, Liu Q L, et al. A review of confined-structure catalysts in the catalytic oxidation of VOCs: synjournal, characterization, and applications[J]. Catalysis Science & Technology, 2021, 11: 5374-5387. |
[2] |
Zhang Z, Jiang Z, Shangguan W. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review[J]. Catalysis Today, 2016, 264: 270-278.
doi: 10.1016/j.cattod.2015.10.040 |
[3] |
Liu B, Ji J, Zhang B, et al. Catalytic ozonation of VOCs at low temperature: a comprehensive review[J]. Journal of Hazardous Materials, 2022, 422: 126847.
doi: 10.1016/j.jhazmat.2021.126847 |
[4] |
He C, Cheng J, Zhang X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568.
doi: 10.1021/acs.chemrev.8b00408 |
[5] |
Enesca A, Cazan C. Volatile organic compounds (VOCs) removal from indoor air by heterostructures/composites/doped photocatalysts: a mini-review[J]. Nanomaterials, 2020, 10: 1965.
doi: 10.3390/nano10101965 |
[6] |
Weon S Y, He F, Choi W Y. Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation[J]. Environmental Science: Nano, 2019, 6(11): 3185-3214.
doi: 10.1039/C9EN00891H |
[7] |
Zhang Z F, Zhang X, Zhang X M, et al. Indoor occurrence and health risk of formaldehyde, toluene, xylene and total volatile organic compounds derived from an extensive monitoring campaign in Harbin, a megacity of China[J]. Chemosphere, 2020, 250: 126324.
doi: 10.1016/j.chemosphere.2020.126324 |
[8] |
Yang C, Miao G, Pi Y, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153.
doi: 10.1016/j.cej.2019.03.232 |
[9] |
Dong F, Han W G, Guo Y, et al. CeCoOx-MNS catalyst derived from three-dimensional mesh nanosheet co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs[J]. Chemical Engineering Journal, 2021, 405: 126948.
doi: 10.1016/j.cej.2020.126948 |
[10] |
Wu P, Jin X J, Qiu Y C, et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts[J]. Environmental Science & Technology, 2021, 55(8): 4268-4286.
doi: 10.1021/acs.est.0c08179 |
[11] | Lee J E, Ok Y S, Tsang D C W, et al. Recent advances in volatile organic compounds abatement by catalysisand catalytic hybrid processes: a critical review[J]. Scince of the Total Environmental, 2020, 719: 137405. |
[12] |
Wi S, Kim M G, Myung S W, et al. Evaluation and analysis of volatile organic compounds and formaldehyde emission of building products in accordance with legal standards: a statistical experimental study[J]. Journal of Hazardous Materials, 2020, 393: 122381.
doi: 10.1016/j.jhazmat.2020.122381 |
[13] | Huang H, Xu Y, Feng Q, et al. Low temperature catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology, 2015, 5: 2649-2669. |
[14] | Li J, Liu H, Deng Y, et al. Emerging nanostructured materials for the catalytic removal of volatile organic compounds[J]. Nanotechnology Reviews, 2016, 5: 147-181. |
[15] |
Liu H, Feng Y, Chen D, et al. Noble metal-based composite nanomaterials fabricated via solution-based approaches[J]. Journal of Materials Chemistry A, 2015, 3: 3182-3223.
doi: 10.1039/C4TA05801A |
[16] |
Feng Y, Ma X, Han L, et al. A universal approach to the synjournal of nanodendrites of noble metals[J]. Nanoscale, 2014, 6: 6173-6179.
doi: 10.1039/c4nr00421c pmid: 24793407 |
[17] |
Chen C, Chen F, Zhang L, et al. Importance of platinum particle size for complete oxidationof toluene over Pt/ZSM-5 catalysts[J]. Chemical Communication, 2015, 51: 5936-5938.
doi: 10.1039/C4CC09383F |
[18] |
Xu Z, Yu J, Jaroniec M. Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt[J]. Applied Catalysis B: Environmental, 2015, 163: 306-312.
doi: 10.1016/j.apcatb.2014.08.017 |
[19] |
Li Z, Yang K, Liu G, et al. Effect of reduction treatment on structural properties of TiO$_{2}$ supported Pt nanoparticles and their catalytic activity for benzene oxidation[J]. Catalysis Letters, 2014, 144: 1080-1087.
doi: 10.1007/s10562-014-1245-1 |
[20] |
Wang H, Yang W, Tian P H, et al. A highly active and anti-coking Pd-Pt/SiO$_{2}$ catalyst for catalytic combustion of toluene at low temperature[J]. Applied Catalysis A: General, 2017, 529: 60-67.
doi: 10.1016/j.apcata.2016.10.016 |
[21] | Na H, Zhu T, Liu Z. Effect of preparation method on the performance of Pt-Au/TiO$_{2}$ catalysts for the catalytic co-oxidation of HCHO and CO[J]. Catalysis Science & Technology, 2014, 4(7): 2051-2057. |
[22] |
Ren Q, Mo S, Peng R, et al. Controllable synjournal of 3D hierarchical Co$_{3}$O$_{4}$ nanocatalysts with various morphologies for the catalytic oxidation of toluene[J]. Journal of Materials Chemistry A, 2018, 6(2): 498-509.
doi: 10.1039/C7TA09149D |
[23] |
Wang Y, Jia A P, Luo M F, et al. Highly active spinel type CoCr$_{2}$O$_{4 }$catalysts for dichloromethane oxidation[J]. Applied Catalysis B: Environmental, 2015, 165: 477-486.
doi: 10.1016/j.apcatb.2014.10.044 |
[24] |
Dobber D, Kieβling D, Schmitz W, et al. MnO$_{x}$/ZrO$_{2}$ catalysts for the total oxidation of methane and chloromethane[J]. Applied Catalysis B-Environmental, 2004, 52(2): 135-143.
doi: 10.1016/j.apcatb.2004.02.012 |
[25] |
Jiang Y W, Gao J H, Zhang Q, et al. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnO$_{x}$-CeO$_{2 }$ catalyst derived from MOF template[J]. Chemical Engineering Journal, 2019, 371: 78-87.
doi: 10.1016/j.cej.2019.03.233 |
[26] |
Zhang X, Wei Y, Song Z, et al. Silicotungstic acid modified CeO$_{2}$ catalyst with high stability for the catalytic combustion of chlorobenzene[J]. Chemosphere, 2021, 263: 128129.
doi: 10.1016/j.chemosphere.2020.128129 |
[27] |
Hu W, He F, Chen X, et al. Hydrothermal synjournal of leaf-like CeO$_{2}$ nanosheets and its MnO$_{x}$/CeO$_{2}$ composites for catalytic combustion of chlorobenzene[J]. Journal Nanoparticle Research, 2019, 21: 6.
doi: 10.1007/s11051-018-4441-x |
[28] |
Gan T, Chu X, Qi H, et al. Pt/Al$_{2}$O$_{3}$ with ultralow Pt-loading catalyze toluene oxidation: promotional synergistic effect of Pt nanoparticles and Al$_{2}$O$_{3}$ support[J]. Applied Catalysis B: Environmental, 2019, 257: 117943.
doi: 10.1016/j.apcatb.2019.117943 |
[29] |
An N, Zhang W, Yuan X, et al. Catalytic oxidation of formaldehyde over different silica supported platinum catalysts[J]. Chemical Engineering Journal, 2013, 215/216: 1-6.
doi: 10.1016/j.cej.2012.10.096 |
[30] |
Zhang C, Liu F, Zhai Y, et al. Alkali-metal-promoted Pt/TiO$_{2 }$opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angewandte Chemie: International Edition, 2012, 51(38): 9628-9632.
doi: 10.1002/anie.v51.38 |
[31] |
Li Y, Zhang C, He H. Significant enhancement in activity of Pd/TiO$_{2}$ catalyst for formaldehyde oxidation by Na addition[J]. Catalysis Today, 2017, 281(3): 412-417.
doi: 10.1016/j.cattod.2016.05.037 |
[32] |
Dai Z, Yu X, Huang C, et al. Nanocrystalline MnO$_{2}$ on an activated carbon fiber for catalytic formaldehyde removal[J]. Rsc Advances, 2016, 6: 97022-97029.
doi: 10.1039/C6RA15463H |
[33] |
Chen H, He J, Zhang C, et al. Self-Assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde[J]. The Journal of Physical Chemistry C, 2007, 111(49): 18033-18038.
doi: 10.1021/jp076113n |
[34] |
Bai B. Arandiyan H, Li J. Comparison of the performance for oxidation of formaldehyde on nano-Co$_{3}$O$_{4}$, 2D-Co$_{3}$O$_{4}$, and 3D-Co$_{3}$O$_{4}$ catalysts[J]. Applied Catalysis B: Environmental, 2013, 142/143: 677-683.
doi: 10.1016/j.apcatb.2013.05.056 |
[35] |
Ma C, Wang D, Xue W. et al. Investigation of formaldehyde oxidation over Co$_{3}$O$_{4}$-CeO$_{2}$ and Au/Co$_{3}$O$_{4}$-CeO$_{2}$ catalysts at room temperature: effective removal and determination of reaction mechanism[J]. Environmental Science & Technology, 2011, 45(8): 3628-3634.
doi: 10.1021/es104146v |
[36] |
Luo D, Chen B, Li X, et al. Three-dimensional nitrogen-doped porous carbon anchored CeO$_{2 }$quantum dots as an efficient catalyst for formaldehyde oxidation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7897-7902.
doi: 10.1039/C8TA00076J |
[37] |
Ma L, Wang D, Li J, et al. Ag/CeO$_{2}$ nanospheres: efficient catalysts for formaldehyde oxidation[J]. Applied Catalysis B: Environmental 2014, 148/149: 36-43.
doi: 10.1016/j.apcatb.2013.10.039 |
[38] |
Wu X D, Zhang L, Weng D, et al. Total oxidation of propane on Pt/WO$_{x}$/Al$_{2}$O$_{3}$ catalysts by formation of metastable Pt$^{\delta +}$ species interacted with WO$_{x}$ clusters[J]. Journal of Hazardous Materials, 2012, 225/226: 146-154.
doi: 10.1016/j.jhazmat.2012.05.011 |
[39] |
Said B I, Sadouki K, Masse S, et al. Advanced Pd/Ce$_{x}$Zr$_{(l-x)}$O$_{2}$/MCM-41 catalysts for methane combustion: effect of the zirconium and cerium loadings[J]. Microporous and Mesoporous Materials, 2018, 260: 93-101.
doi: 10.1016/j.micromeso.2016.10.044 |
[40] |
Pattrick G, van der Lingen E, Corti C W, et al. The potential for use of gold in automotive pollution control technologies: a short review[J]. Topics in Catalysis, 2004, 30/31: 273-279.
doi: 10.1023/B:TOCA.0000029762.14168.d8 |
[41] |
Centeno M A, Paulis M, Montes M, et al. Catalytic combustion of volatile organic compounds on Au/CeO$_{2}$/Al$_{2}$O$_{3}$ and Au/Al$_{2}$O$_{3}$ catalysts[J]. Applied Catalysis A: General, 2002, 234, 65-78.
doi: 10.1016/S0926-860X(02)00214-4 |
[42] |
Huang Q, Zuo S, Zhou R. Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs[J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 327-334.
doi: 10.1016/j.apcatb.2010.01.011 |
[43] |
Xing X, Li N, Cheng J, et al. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of $n$-butylamine[J]. Journal of Environmental Sciences, 2020, 96: 55-63.
doi: 10.1016/j.jes.2020.03.015 |
[44] |
Huguet E, Coq B, Durand R, et al. A highly efficient process for transforming methyl mercaptan into hydrocarbons and H$_{2}$S on solid acid catalysts[J]. Applied Catalysis B: Environmental, 2013, 134/135: 344-348.
doi: 10.1016/j.apcatb.2013.01.037 |
[45] |
Hulea V, Huguet E, Cammarano C, et al. Conversion of methyl mercaptan and methanol to hydrocarbons over solid acid catalysts-a comparative study[J]. Applied Catalysis B: Environmental, 2014, 144: 547-553.
doi: 10.1016/j.apcatb.2013.07.056 |
[46] |
He D, Hao H, Chen D, et al. Effects of rare-earth (Nd, Er and Y) doping on catalytic performance of HZSM-5 zeolite catalysts for methyl mercaptan (CH$_{3}$SH) decomposition[J]. Applied Catalysis A: General, 2017, 533: 66-74.
doi: 10.1016/j.apcata.2017.01.011 |
[47] |
He D, Chen D, Hao H, et al. Enhanced activity and stability of Sm-doped HZSM-5 zeolite catalysts for catalytic methyl mercaptan (CH$_{3}$SH) decomposition[J]. Chemical Engineering Journal, 2017, 317: 60-69.
doi: 10.1016/j.cej.2017.02.067 |
[48] |
Yu J, He D, Zhao Y, et al. Promotion of catalytic performance by adding chromium into HZSM-5 zeolite catalyst for methyl mercaptan catalytic conversion[J]. Materials Chemistry and Physics, 2020, 239: 121952.
doi: 10.1016/j.matchemphys.2019.121952 |
[49] |
Patterson M J, Angove D E, Cant N W. The effect of carbon monoxide on the oxidation of four C$_{6}$ to C$_{8}$ hydrocarbons over platinum, palladium and rhodium[J]. Applied Catalysis B: Environmental, 2000, 26(1): 47-57.
doi: 10.1016/S0926-3373(00)00110-7 |
[50] |
Abdullah A Z, Abu Bakar M Z, Bhatia S. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5catalyst[J]. Journal of Hazardous Materials, 2006, 129(1/3): 39-49.
doi: 10.1016/j.jhazmat.2005.05.051 |
[51] |
Dai Q, Wang X, Lu G. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation[J]. Applied Catalysis B: Environmental, 2008, 81(3/4): 192-202.
doi: 10.1016/j.apcatb.2007.12.013 |
[1] | YUAN Tongwei, ZHANG Wenshuang, MA Zhiheng, XU Jiaqiang. Polyhedral bi-shell CO$_{\bf 3}$O$_{\bf 4}$-ZnO and its CO sensing performance [J]. Journal of Shanghai University(Natural Science Edition), 2021, 27(5): 866-878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||