研究论文

隧道环境下1.8 GHz无线信道测量与分析

展开
  • 上海大学 特种光纤与光接入网省部共建重点实验室,上海 200444

收稿日期: 2017-02-20

  网络出版日期: 2019-02-26

基金资助

国家自然科学基金面上资助项目(61571282)

Wireless channel measurements and analysis at 1.8 GHz in a tunnel environment

Expand
  • Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China

Received date: 2017-02-20

  Online published: 2019-02-26

摘要

基于多输入多输出(multiple input multiple output, MIMO)技术的地铁长期演进系统(long term evolution-metro, LTE-M)将在下一代城市轨道交通列车控制系统中得以应用. 由于LTE-M工作于1.8 GHz频段, 因此研究在隧道环境下1.8 GHz频段的传播特性非常重要. 利用宽带扩频序列以及虚拟MIMO方法, 测量并分析了隧道内1.8 GHz频段自由天线的路径损耗、均方根(root mean square, RMS)时延、MIMO容量等传播特性. 结果表明: 在隧道环境下1.8 GHz频段的路径损耗因子低于自由空间内的路径损耗因子; 隧道横截面积的变化会影响电磁波的传播特性; MIMO天线阵规模越大, 容量越大; 天线间距的变化会引起MIMO容量的变化.

本文引用格式

裴欣栋, 尹晓宇, 武艺鸣, 郑国莘 . 隧道环境下1.8 GHz无线信道测量与分析[J]. 上海大学学报(自然科学版), 2019 , 25(1) : 24 -34 . DOI: 10.12066/j.issn.1007-2861.1885

Abstract

The long term evolution-metro (LTE-M) method based on multiple input multiple output (MIMO) technology will be used in the next generation urban rail transit train control systems. As LTE-M works in the 1.8 GHz band, it is important to study wave propagation characteristics in a tunnel environment at 1.8 GHz. Using a wideband spread spectrum sequence and the virtual MIMO method, the key radio channel characteristics of a tunnel at 1.8 GHz are investigated, including path loss, root mean square (RMS) delay spread, and MIMO channel capacity. The results show that the path loss factor in a tunnel environment at 1.8 GHz is lower than that in a free space, and changes in the tunnel cross-sectional area can affect electromagnetic wave propagation. Besides, the larger the number of MIMO antenna array elements, the greater the capacity. Changing the antenna spacing can change MIMO capacity.

参考文献

[1] Zhang Y P, Huang Y, Kouyoumjian R G . Ray-optical prediction of radio-wave propagation characteristics in tunnel environments---Part 2: analysis and measurements[J]. IEEE Transactions on Antennas and Propagation, 1998,46(9):1337-1345.
[2] Lienard M, Degauque P, Baudet J . Investigation on MIMO channels in subway tunnels[J]. IEEE Journal on Selected Areas in Communications, 2003,21(3):332-339.
[3] Masson E, Cocheril Y, Berbineau M . 4$\times $4 MIMO channel sounding in tunnels for train-to-wayside communications[C]// 2012 International Conference on Wireless Communications in Unusual and Confined Areas (ICWCUCA). 2012: 1-5.
[4] Valdesueiro A, Izquierdo J B, Romeu J . On 2$\times $2 MIMO observable capacity in subway tunnels at C-band: an experimental approach[J]. IEEE Antennas and Wireless Propagation Letters, 2010(9):1099-1102.
[5] Molina-Garcia-Pardo J M, Lienard M, Degauque P . Propagation in tunnels: experimental investigations and channel modeling in a wide frequency band for MIMO applications[J]. EURASIP Journal on Wireless Communications and Networking, 2009(1):560-571.
[6] Li J X, Zhao Y P, Zhang J . Radio channel measurements and analysis at 2.4/5 GHz in subway tunnels[J]. China Communications, 2015,12(1):36-45.
[7] He R, Zhong Z, Briso C . Broadband channel long delay cluster measurements and analysis at 2.4 GHz in subway tunnels[C]// 2011 IEEE 73rd Vehicular Technology Conference (VTC). 2011: 1-5.
[8] Ai B, Guan K, Zhong Z D . Measurement and analysis of extra propagation loss of tunnel curve[J]. IEEE Transactions on Vehicular Technology, 2016,65(4):1847-1858.
[9] Yang Q, Xu G H, Ling H . An experimental investigation of wideband MIMO channel characteristics based on outdoor non-LOS measurements at 1.8 GHz[J]. IEEE Transactions on Antennas and Propagation, 2006,54(11):3274-3284.
[10] Guan K, Zhong Z, Ai B, et al. Propagation mechanism analysis before the break point inside tunnels[C]// 2011 IEEE Transactions on Vehicular Technology Conference (VTC). 2011: 1-5.
[11] Hrovat A, Kandus G, Javornik T . Four-slope channel model for path loss prediction in tunnels at 400 MHz[J]. IET Microwaves, Antennas and Propagation, 2010,4(5):571-582.
文章导航

/