研究论文

退火气氛对 Bi$_{\textbf{2}}$O$_{\textbf{3}}$ 薄膜电致变色性能的影响

展开
  • 上海大学 材料科学与工程学院, 上海 200444

收稿日期: 2017-01-11

  网络出版日期: 2018-12-26

基金资助

上海市科委科技基金资助项目(15JC1400303)

Effect of annealing atmosphere on electrochromic property of Bi$_{\textbf{2}}$O$_{\textbf{3}}$ thin films

Expand
  • School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

Received date: 2017-01-11

  Online published: 2018-12-26

摘要

采用溶胶-凝胶法制备了 Bi$_{2}$O$_{3}$ 薄膜, 分别在空气、氮气、氧气气氛中退火. 用X射线衍射 (X-ray diffraction, XRD) 仪分析薄膜的物相结构; 用扫描电子显微镜 (scanning electron microscope, SEM) 观察薄膜的表面形貌;Doi: 用紫外可见分光光度计 (ultraviolet-visible spectroscopy, UV-Vis) 以及电化学工作站测试薄膜的电致变色性能. 结果表明: Bi$_{2}$O$_{3}$ 薄膜具有电致变色现象, 表现为黑色与透明淡黄色之间的相互转换, 其中氮气气氛退火的样品具有 100${\%}$ 的化学计量比相及较高含量的 $\delta $ 相, 颗粒尺寸分布范围较小, 电致变色效率最高, 约为 21 cm$^{2}$/C.

本文引用格式

于静静, 石基, 俞圣雯 . 退火气氛对 Bi$_{\textbf{2}}$O$_{\textbf{3}}$ 薄膜电致变色性能的影响[J]. 上海大学学报(自然科学版), 2018 , 24(6) : 968 -977 . DOI: 10.12066/j.issn.1007-2861.1882

Abstract

Bi$_{2}$O$_{3}$ thin films were prepared with a sol-gel technique, and annealed in air, nitrogen and oxygen. The phase structures of films were analyzed with X-ray diffraction (XRD). Surface morphology was observed with scanning electron microscope (SEM). Electrochromic properties were tested with ultraviolet-visible spectroscopy (UV-Vis) and an electrochemical workstation. It is discovered that the color state of Bi$_{2}$O$_{3}$ thin films switched between black and light yellow transparent. The Bi$_{2}$O$_{3}$ thin film annealed in nitrogen with 100${\%}$ stoichiometric phase, higher $\delta $ phase, and smaller particle size distribution has the highest electrochromic efficiency of about 21 cm$^{2}$/C.

参考文献

[1] Platt J R. Electrochromism, a possible change of color producible in dyes by an electric field[J]. J Chem Phys, 1961,34:862-863.
[2] Patz J A, Campbell-Lendrum D, Holloway T, et al. Impact of regional climate change on human health[J]. Nature, 2005,438(7066):310-317.
[3] Baetens R, Jelle B P, Gustavsen A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review[J]. Solar Energy Materials & Solar Cells, 2010,94(2):87-105.
[4] Joraid A A. Comparison of electrochromic amorphous and crystalline electron beam deposited WO$_3$: thin films[J]. Current Applied Physics, 2009,9:73-79.
[5] Granqvist C G. Electrochromic tungsten oxide films: review of progress[J]. Solar Energy Mater Solar Cells, 2000,60:201-262.
[6] 张征林, 王怡红, 王宏苏, 等. 电致变色材料及应用[J]. 电子元件与材料, 1999,18:32.
[7] Granqvist C G. Electrochromic oxide: microstructure and optical properties[J]. Proc Soc, 1993, DOI: 10.1117/12.161949.
[8] Corbella C, Vives M, Pinyol A, et al. Influence of the porosity of RF sputtered Ta$_2$O$_5$ thin films on their optical properties for electrochromic applications[J]. Solid State Ionics, 2003,165:15-22.
[9] Shimanoe K, Suetsugu M, Miura N, et al. Bismuth oxide thin film as new electrochromic material[J]. Solid State Ionics, 1998(113/114/115):415-419.
[10] 崔毅, 王聪, 周瑜升. 射频磁控溅法制备 Bi$_{2}$O$_{3}$ 薄膜的电致变色性能研究[J]. 功能材料与器件学报, 2010,16(6):548-554.
[11] Gomez C L, Depablos-Rivera O, Silva-Bermudez P. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases[J]. Thin Solid Films, 2015,578:103-112.
[12] Sammes N M, Tompsett G A, Nafe H, et al. Bismuth based oxide electrolytes-structure and ionic conductivity[J]. J Eur Ceram Soc, 1999,19(10):1801-1826.
[13] Shuk P, Wiemh H D, Guth U, et al. Oxide ion conducting solid electrolytes based on Bi$_{2}$O$_{3}$[J]. Solid State Ionics, 1996,89:179-196.
[14] Fan H T, Pan S S, Teng X M, et al. Deta-Bi$_{2}$O$_{3}$ thin films prepared by reactive sputtering: fabrication and characterization[J]. Thin Solid Films, 2006,513(1/2):142-147.
[15] Switzer J A, Shumsky M G, Bohannan E W. Electrodeposited ceramic single crystals[J]. Science, 1999,284(5412):293-296.
[16] Liu H F, Ansah A K K, Wang Y D, et al. Atomic layer deposition of crystalline Bi$_{2}$O$_{3}$ thin films and their conversion into Bi$_{2}$S$_{3}$ by thermal vapor sulfurization[J]. RSC Advances, 2014,4:58724-58731.
[17] Cai G F, Tu J P, Zhang J, et al. An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties[J]. Nanoscale, 2012,4:5724-5730.
[18] Moiseev G K, Vatolin N A, Belousova N V. Thermal decomposition of BiO, Bi$_{2}$O$_{3}$, BiO$_{2}$, and Bi$_{2}$O$_{5}$ in oxygen and argon media[J]. Russ J Phys Chem, 2000,74:1054.
[19] Yang X, Lian X J, Liu S J. Visible light photoelectrochemical properties of Bi$_{2}$O$_{3 }$ nanoporous films: a study of the dependence on thermal treatment and film thickness[J]. Applied Surface Science, 2013,282:538-543.
[20] Wen R T, Granqvist C G, Niklasson G A, et al. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO$_{3}$ thin films[J]. Nature Materials, 2015,14:996-1001.
[21] Takahashi T, Iwahara H, Nagai Y. High oxide ion conduction in sintered Bi$_{2}$O$_{3}$ containing SrO, CaO or La$_{2}$O$_{3}$[J]. J Appl Electrochem, 1972,2(2):97-104.
文章导航

/