研究论文

基于不完备静态数据的结构损伤两阶段识别方法

展开
  • 上海大学 土木工程系, 上海 200444

收稿日期: 2016-09-25

  网络出版日期: 2018-10-26

Two-stage identification of structural damage based on incomplete static data

Expand
  • Department of Civil Engineering, Shanghai University, Shanghai 200444, China

Received date: 2016-09-25

  Online published: 2018-10-26

摘要

在结构损伤识别中, 由于实测数据有限而待识别参数过多, 往往导致传统的结构损伤识别方法判断损伤位置不准确或损伤程度识别误差较大, 从而限制了其在复杂结构中的应用. 将基于静态应变能的损伤定位指标和基于有限元缩聚法的损伤程度计算相结合, 提出了一种两阶段的结构损伤识别方法. 该方法利用损伤定位指标对结构可能的损伤位置进行定位, 在确定可能损伤位置的基础上, 利用模拟退火算法求解损伤状态方程, 从而确定损伤程度. 为验证该方法的有效性和可靠性, 分别对5单元超静定、13单元静定和10单元超静定平面桁架的损伤识别进行了数值模拟. 结果表明, 该方法不仅可有效地识别出结构的损伤位置和程度, 而且对测量噪声具有较强的鲁棒性.

本文引用格式

杨万锋, 杨骁 . 基于不完备静态数据的结构损伤两阶段识别方法[J]. 上海大学学报(自然科学版), 2018 , 24(5) : 841 -852 . DOI: 10.12066/j.issn.1007-2861.1844

Abstract

In structural damage identification, traditional methods often result in wrong damage locations and large error in the degree of damages due to limited measurements and too many parameters. Applications of these methods are limited for complex structures. A two-stage identification method for structural damage based on incomplete static data is presented in this paper. The method combines damage localization index based on static strain energy and damage degree computation based on a finite element condensation technique. Possible damage locations of the structure are located with the damage localization index. The degrees of damage are determined by solving the damage state equation with a simulated annealing algorithm. To verify availability and reliability of the proposed method, damaged identifications of a 5 element statically indeterminate, a 13 element statically determinate, and a 10 element statically indeterminate planar trusses are simulated numerically. The results show that the proposed method can effectively identify locations of structural damage and the degrees of the damage. It is robust against measurement noise.

参考文献

[1] 孙国, 顾元宪. 连续梁结构损伤识别的改进柔度阵方法[J]. 工程力学, 2003,20(4):50-54.
[2] Ismail Z, Razak H A, Rahman A G A. Determination of damage location in RC beams using mode shape derivatives[J]. Engineering Structures, 2006,28(11):1566-1573.
[3] Sheng E F, Ricardo P. Power mode shapes for early damage detection in linear structures[J]. Journal of Sound and Vibration, 2009,324(1/2):45-56.
[4] 张宇鑫, Jang S, Spencer B F. 结构损伤位置识别的位移 DLV 方法[J]. 工程力学, 2009,26(5):209-215.
[5] Zhu H P, Li L, He X Q. Damage detection method for shear building using the changes in the first mode shape slops[J]. Computers and Structures, 2011,89(9/10):733-743.
[6] 孙晓丹, 欧进萍. 基于小波包和概率主成份分析的损伤识别[J]. 工程力学, 2011,28(2):12-27.
[7] Sheena Z, Unger A, Zalmanovich A. Theoretical stiffness matrix correction by using static test results[J]. Isarel Journal of Technology, 1982,20(6):245-253.
[8] Snayaei M, Scmapoli S F. Structural element stiffness identification from static test data[J]. Journal of Engineering Mechanics, 1991,117(5):1021-1036.
[9] 崔飞, 袁万城, 史家钧. 基于静态应变及位移测量的结构损伤识别法[J]. 同济大学学报(自然科学版), 2000,28(1):5-8.
[10] Kim J T, Ryu Y S, Cho H M. Damage identification in beam-type structures: frequency-based method vs mode-shape-based method[J]. Engineering Structures, 2003,25(1):57-67.
[11] 李蕊, 周丽. 基于不完全测量的结构损伤识别研究[J]. 西安建筑科技大学学报 (自然科学版), 2011,43(1):25-30.
[12] 赵建华, 张陵, 相秉志, 等. 一种不完备测试数据下的结构损伤识别方法[J]. 应用力学学报, 2010,27(4):670-673.
[13] Seyed S K, Abdollah B, Gholamreza G A. Structural damage detection using incomplete modal data and incomplete static response[J]. KSCE Journal of Civil Engineering, 2013,17(1):216-223.
[14] 聂振华, 马宏伟. 基于重构相空间的结构损伤识别方法[J]. 固体力学学报, 2013,34(1):83-92.
[15] 李世龙, 马立元, 田海雷, 等. 基于不完备实测模态数据的结构损伤识别方法研究[J]. 振动与冲击, 2015,34(3):196-203.
[16] Chen W, Zhao W G, Yang H Z, et al. Damage detection based on optimized incomplete mode shape and frequency[J]. Acta Mechanica Solida Sinica, 2015,28(1):74-82.
[17] Sun H Büyük?ztürk O. Probabilistic updating of building models using incomplete modal data[J]. Mechanical Systems and Signal Processing, 2016,75(15):27-40.
[18] Banks H T, Inman D J, Leo D J. An experimentally validated damage detection theory in smart structures[J]. Journal of Sound and Vibration, 1996,191(5):859-880.
[19] Luo H, Hanagud S. An integral equation for changes in the structural dynamics characteristics of damaged structures[J]. International Journal of Solids and Structures, 1997,34(35/36):4557-4579.
[20] Seyedpoor S M, Yazdanpanah O. An efficient indicator for structural damage localization using the change of strain energy based on static noisy data[J]. Applied Mathematical Modelling, 2014,38(8):2661-2672.
[21] Logan D L. A first course in the finite element method[M]. 5th ed. Stamford: Cengage Learning, 2012: 407-411.
[22] 何浩祥, 吕永伟, 韩恩圳. 基于静动力凝聚及扩展卡尔曼滤波的连续梁桥损伤识别[J]. 工程力学, 2015,32(7):156-163.
[23] Metropolis N, Rosenbluth A W, Rosenbluth M N. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953,21(6):1087-1092.
[24] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983,220(4598):671-680.
文章导航

/