收稿日期: 2017-06-29
网络出版日期: 2018-10-26
基金资助
国家高技术研究发展计划(863计划)资助项目(2015AA033905)
Preparation and properties of EVA/HSP composite foams
Received date: 2017-06-29
Online published: 2018-10-26
以用途广泛的乙烯-醋酸乙烯酯(ethylene-vinyl acetate, EVA)为基体, 采用模压成型工艺制备了 EVA/汉麻秆芯粉(EVA/hemp stem powder, EVA/HSP)复合发泡材料. 通过扫描电子显微镜(scanning electron microscopy, SEM)观察了 EVA/HSP 复合发泡材料的泡孔形貌, 通过哈克转矩流变仪研究了 EVA/HSP 复合发泡材料的流变形能, 表征了不同 HSP 添加量的 EVA/HSP 复合发泡材料的吸湿快干性能和力学性能, 探讨了 HSP 添加量对吸湿快干性能和断裂伸长率的影响机制. 结果发现, 当 HSP 的添加量为 10$\sim$20 phr 时, 材料的综合性能最优. 这是因为适量的 HSP 有助于改善材料的泡孔形貌, 兼具补强和增韧的效果, 并赋予了材料优异的吸湿快干性能.
刘丽, 诸慧杰, 涂多想, 郝新敏, 黄杰 . EVA/HSP 复合发泡材料的制备和性能[J]. 上海大学学报(自然科学版), 2018 , 24(5) : 782 -790 . DOI: 10.12066/j.issn.1007-2861.1956
The composite foams consisting of ethylene-vinyl acetate (EVA) and hemp stem powder (HSP) are prepared by melt mixing and compressing molding. Morphology of the samples is evaluated with scanning electron microscopy (SEM), and rheological properties evaluated with Haake rheometer. The effects of HSP content on quick drying and mechanical properties are studied, and the mechanism is explored. When the HSP content is 10$\sim$20 phr, the materials have the best overall performance because a proper amount of HSP can improve cell morphology, strengthen, toughen the matrix, and give the materials quick drying performance.
| [1] | 接家振. 我国 EVA 生产现状及发展前景[J]. 化工管理, 2015(8):74-75. |
| [2] | Pandey J K, Reddy K R, Kumar A P, et al. An overview on the degradability of polymer nanocomposites[J]. Polymer Degradation & Stability, 2005,88(2):234-250. |
| [3] | Deng F, Ma J, Xue C, et al. Foamed materials from POE/EVA blends[J]. Journal of Functional Materials, 2012(4):508-511. |
| [4] | Julyanon J, Kaesaman A, Sakai T, et al. Improvement of structure and properties of nanocomposite foams based on ethylene-vinyl acetate (EVA)/natural rubber (NR)/nanoclay: effect of NR addition[J]. Key Engineering Materials, 2015,659:418-422. |
| [5] | Spina R. Technological characterization of PE/EVA blends for foam injection molding[J]. Materials & Design, 2015,84:64-71. |
| [6] | Zhang Z X, Zhang T, Wang D, et al. Physicomechanical, friction, and abrasion properties of EVA/PU blend foams foamed by supercritical nitrogen[J]. Polymer Engineering and Science, 2017, DOI: 10.1002/pen.24598. |
| [7] | Thongpin C, Muanwong A, Yanyongsak J, et al. Effect of ENR contents on cure characteristic and properties of NR/ENR/EVA foam[J]. Materials Science Forum, 2017,889:45-50. |
| [8] | Deng F, Ma J, Xue C, et al. Morphology and mechanical properties of EVA/OSEP foamed materials[J]. Journal of Functional Materials, 2013(7):15. |
| [9] | Jin B H, Xia Z W. Study on the effect of filling modification of foaming EVA from slag powder and modified slag powder[J]. Journal of Hunan Industry Polytechnic, 2016,16(2):12-14. |
| [10] | Zheng H D, Qiu H F, Zheng Y Y, et al. Preparation and antibacterial property of EVA composite foams supported by nano-silver[J]. Journal of Materials Engineering, 2016, DOI: 10.11868/j.issn.1001-4381.2016.07.018. |
| [11] | Sang G, Zhu Y, Yang G. Mechanical properties of high porosity cement-based foam materials modified by EVA[J]. Construction & Building Materials, 2016,112:648-653. |
| [12] | Rodriguez-Perez M A, Simoes R D, Constantino C J L, et al. Structure and physical properties of EVA/starch precursor materials for foaming applications[J]. Journal of Applied Polymer Science, 2011,121(4):2324-2330. |
| [13] | Rodriguezpe-Rez M A, Simoes R D, Roman-Lorza S, et al. Foaming of EVA/starch blends: characterization of the structure, physical properties, and biodegradability[J]. Polymer Engineering and Science, 2012,52(1):62-70. |
| [14] | Matheus V G Z, Taís C T, Ruth M C S, et al. The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites[J]. Materials & Design, 2014,57:660-666. |
| [15] | Kim J H, Kim G H. Preparation and cell morphology of ethylene-vinyl acetate copolymer (EVA)/wood-flour foams with low density[J]. Journal of Applied Polymer Science, 2014,131(20), DOI: 10.1002/app.40894. |
| [16] | Zimmermann M V G, Turella T C, Santana R M C, et al. The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites[J]. Materials & Design, 2014,57:660-666. |
| [17] | Hao X M, Ma W J, Gan G, et al. Analysis of novel structure of EVA/hemp stem powder foam materials[J]. Advanced Materials Research, 2012,627:651-654. |
| [18] | 倪燕, 柯勤飞, 冯云. 汉麻纤维及其发展前景[J]. 轻纺工业与技术, 2013,42(1):21-23. |
| [19] | 郝新敏, 杨元, 安利霞, 等. 汉麻秆芯抗菌成分提取与织物抗菌整理应用研究[C]// 抗菌科学与技术论坛. 2014: 103. |
| [20] | 王菲. 高品质汉麻产业化的实现[J]. 纺织科学研究, 2017(2):31-33. |
| [21] | Zhang S, Rodrigue D, Riedl B. Preparation and morphology of polypropylene/wood flour composite foams via extrusion[J]. Polymer Composites, 2005,26(6):731-738. |
| [22] | Rodrigue D, Gosselin R. The effect of nucleating agents on polypropylene foam morphology[J]. Blowing Agents and Foaming Process, 2003(5):169-178. |
| [23] | Matuana L M, Park C B, Balatinecz J J. Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites[J]. Polymer Engineering & Science, 1998,38(11):1862-1872. |
| [24] | Rizvi G M, Park C B, Guo G. Strategies for processing wood plastic composites with chemical blowing agents[J]. Journal of Cellular Plastics, 2008,44(2):125-137. |
| [25] | Kuboki T, Lee Y H, Park C B, et al. Mechanical properties and foaming behavior of cellulose fiber reinforced high-density polyethylene composites[J]. Polymer Engineering & Science, 2009,49(11):2179-2188. |
| [26] | Rizvi G M, Pop-Iliev R, Parky C B. A novel system design for continuous processing of plastic/wood-fiber composite foams with improved cell morphology[J]. Journal of Cellular Plastics, 2002,38(5):367-383. |
| [27] | Ganter M, Gronski W, Reichert P, et al. Rubber nanocomposites: morphology and mechanical properties of BR and SBR vulcanizates reinforced by organophilic layered silicates[J]. Rubber Chemistry and Technology, 2001,74(2):221-235. |
| [28] | Gatos K G, Sawanis N S, Apostolov A A, et al. Nanocomposite formation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite as a function of the intercalant type[J]. Macromolecular Materials and Engineering, 2004,289(12):1079-1086. |
| [29] | Wu Y P, Ma Y, Wang Y Q, et al. Effects of characteristics of rubber, mixing and vulcanization on the structure and properties of rubber/clay nanocomposites by melt blending[J]. Macromolecular Materials and Engineering, 2004,289(10):890-894. |
/
| 〈 |
|
〉 |