数理化科学

复杂荷载环境下海上风力机的建模及动力学特性分析

展开
  • 上海大学上海市应用数学和力学研究所, 上海 200072
郭兴明(1964—), 男, 教授, 博士生导师, 博士, 研究方向为连续介质力学与力学中的数学方法. E-mail: xmguo@shu.edu.cn

收稿日期: 2015-06-16

  网络出版日期: 2016-10-31

基金资助

国家重点基础研究发展计划(973计划)资助项目(2014CB0462003)

Dynamics modeling and analysis of offshore wind turbines under complicated loads

Expand
  • Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

Received date: 2015-06-16

  Online published: 2016-10-31

摘要

通过分析处于海风、海浪、海流、土壤力等复杂荷载作用下的海上风力机支撑结构, 采用赫维赛德阶跃函数和狄拉克函数建立了连续统一的、顶端带有集中质量块的悬垂梁风力机动力学模型. 基于对控制方程的Galerkin截断, 得到离散化的常微分方程组, 使用四阶Runge-Kutta方法求解, 得到了模型的动力学行为特性云图曲线. 通过悬垂梁风力机模型的时程曲线、庞加莱映射对风力机模型进行动力学分析, 给出了位移和速度的幅值随激振力频率变化的幅频特性曲线, 并研究了垂向激振、自重、变刚度参数对风力机结构振动特性及其稳定性的影响.

本文引用格式

王青占, 赵建中, 郭兴明 . 复杂荷载环境下海上风力机的建模及动力学特性分析[J]. 上海大学学报(自然科学版), 2016 , 22(5) : 573 -585 . DOI: 10.3969/j.issn.1007-2861.2015.02.016

Abstract

By analyzing the structure and complexity of offshore wind turbines (OWTs), a beam model with free end carrying a concentrated mass body was built to analyze dynamical characteristics of OWTs subject to adverse working environment loads. Factors including vertical excitation, self-weight, rotary inertia and variety of stiffness were considered to study the effect on offshore wind turbines. A general and uniform governing equation was built by taking advantages of the Heaviside step function and Dirac delta function. Based on the Galerkin truncation and the Runge-Kutta time discretization, numerical solutions of the kinematic governing equation were obtained. By comparing with the analytical solution under specified conditions, validity of the method was checked. The time history of the beam’s free end was chosen to represent motion of the beam. Based on the steady time history of the beam, a Poincar´e map was constructed to study its periodic motion. Furthermore, an amplitude-frequency curve was given to find the dangerous frequency range where OWTs exist.

参考文献

[1] 林鹤云, 郭玉敬, 孙蓓蓓. 海上风电的若干关键技术综述[J]. 东南大学学报(自然科学版), 2011, 41(4): 882-888.
[2] 尚景宏. 海上风力机基础结构设计选型研究[D]. 哈尔滨: 哈尔滨工程大学, 2010: 11-19.
[3] 李益, 张宏战, 马震岳. 基于土-结构相互作用的海上风机模态分析[J]. 水电与新能源, 2013(1): 70-73.
[4] 胡文瑞, 王同光, 李晔. “大型(兆瓦级)风力机的空气动力学问题”专刊前言[J]. 应用数学和力学, 2013, 34(10): 1-2.
[5] 周济福, 林毅峰. 海上风电工程结构与地基的关键力学问题[J]. 中国科学: 物理学力学天文学, 2013, 43(12): 1590-1593.
[6] 陈前, 付世晓, 邹早建. 海上风力发电机组支撑结构动力特性分析[J]. 振动与冲击, 2012, 31(2): 86-90.
[7] 顾岳飞. 大兆瓦风电机组塔架的有限元分析与优化设计[D]. 上海: 上海交通大学, 2012: 18-45.
[8] 李立岗. 风力发电机塔架结构动力特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2011: 21-29.
[9] 严磊. 风力发电机支撑体系结构设计研究[D]. 天津: 天津大学, 2008: 37-41.
[10] Leblanc C. Design of offshore wind turbine support structures [D]. Aalborg: Aalborg University, 2009: 16-27.
[11] Agarwal P. Structural reliability of offshore wind turbines [D]. Texas: The University of Texas at Austin, 2008.
[12] Lombardi D, Bhattacharya S, Wood D M. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil [J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165-180.
[13] 王磊, 何玉林, 金鑫, 等. 漂浮式海上风电机组动力学仿真分析[J]. 中南大学学报(自然科学版), 2012, 43(4): 1309-1314.
[14] Piana G. Vibrations and stability of axially and transversely loaded structures [D]. Turin: Polytechic University Turin, 2013.
[15] Virgin L N. Vibration of axially-loaded structures [M]. Cambridge: Cambridge University Press, 2007.
[16] He W, Ge S S. Vibration control of a nonuniform wind turbine tower via disturbance observer [J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(1): 237-244.
[17] Lajimi S A M, Heppler G R. Free vibration and buckling of cantilever beams under linearly varying axial load carrying an eccentric end rigid body [J]. Transactions of the Canadian Society for Mechanical Engineering, 2013, 37(1): 89-109.
[18] Auciello N M. Dynamic analysis of immersed tapered column carrying an eccentric mass at the free [J]. Advanced Research in Scientific Areas, 2013(1): 412-417.
[19] Uscilowska A, Kolodziej J A. Free vibration of immersed column carrying a tip mass [J]. Journal of Sound and Vibration, 1998, 216(1): 147-157.
[20] Andersen L V, Vahdatirad M J, Sichani M T, et al. Natural frequencies of wind turbines on monopile foundations in clayey soils—a probabilistic approach [J]. Computers and Geotechnics, 2012, 43(11): 1-11.
[21] Beran J, Calveri L, Lange B, et al. Offshore wind modelling and forecast [C]//Proceedings of the 6th WRF/15th MM5 Users’ Workshop. 2005: 1-9.

[22] Adhikari S, Bhattacharya S. Vibrations of wind-turbines considering soil-structure interaction[J]. Wind and Structures, 2011, 14(2): 85-112.
[23] 刘延柱, 陈文良, 陈立群. 振动力学[M]. 北京: 高等教育出版社, 1998: 130-135.
[24] Adhikari S, Bhattacharya S. Dynamic analysis of wind turbine towers on flexible foundations [J]. Shock and Vibration, 2012, 19(1): 37-56.
[25] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学[J]. 物理学报, 2013, 62(20): 200502.

文章导航

/