通信与信息工程

密集布放环境下RFID标签受限链路

展开
  • 上海大学 特种光纤与光接入网省部共建重点实验室, 上海 200072

收稿日期: 2013-10-22

  网络出版日期: 2014-10-30

基金资助

上海市科委重点资助项目(12510500600)

RFID Limited System Link Analysis of Stacked Tags

Expand
  • Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China

Received date: 2013-10-22

  Online published: 2014-10-30

摘要

由于在密集布放时, 超高频(ultra high frequency, UHF)射频识别(radio frequency identification, RFID)标签不仅存在算法上的碰撞问题, 而且标签之间存在电磁耦合, 会造成系统性能下降. 首先从理论上分别推导出前、后向链路的标签最小读取功率与天线增益的关系, 然后通过仿真得出小间距下的标签天线增益. 对比实验中测得的小间距下标签最小读取功率的变化, 得出如下结论: 多标签在密集布放环境下的瓶颈链路为前向链路; 标签天线增益和功率传输系数是影响群读性能的关键因素. 分析和测试结果可以为设计群读性能优异的标签提供参考.

本文引用格式

肖芳鑫, 张雪凡, 李帅, 彭章友, 翟旭平, 任秀芳, 孟春阳 . 密集布放环境下RFID标签受限链路[J]. 上海大学学报(自然科学版), 2014 , 20(5) : 624 -632 . DOI: 10.3969/j.issn.1007-2861.2013.07.048

Abstract

Radio frequency identification (RFID) tags produce electromagnetic (EM) coupling when stacked together, causing performance degradation of RFID systems. This problem is different from the well-known RFID collision problem. This paper first obtains the connection between the tag’s reading power and antenna gain of both forward link and reverse link by theoretical derivation. The tag antenna gain is simulated when two tags are close to each other. By comparing with the reading power of two tags measured in the experiment, the following conclusions are made. Performance of RFID systems is limited by the forward link when tags are stacked. Antenna gain and power transmission coefficient of stacked tags are key factors that influence tags reading rate. Conclusions can provide a reference for developing high performance tags in dense tag environment.

参考文献

[1] Zhu L, Yum T S P. A critical survey and analysis of RFID anti-collision mechanisms [J]. IEEE Communications Magazine, 2011, 49(5): 214-221.

[2] Metzger C, Thiesse F, Gershwin S, et al. The impact of false-negative reads on the performance of RFID-based shelf inventory control policies [J]. Computers & Operations Research, 2013, 40(7): 1864-1873.

[3] Floerkemeier C, Lampe M. Issues with RFID usage in ubiquitous computing applications [C]//Pervasive Computing. 2004: 188-193.
[4] Pillai V, Peternel J, Helnrich H, et al. Using volatile state storage for substantial improvement in RFID throughput [C]//Automatic Identification Advanced Technologies 2005. 2005:

101-105.

[5] Dobkin D B, Weigrand S M. UHF RFID and tag antenna scattering, part I: experimental results [J]. Microwave Journal, 2006, 47(5): 170-190.

[6] Weigrand S M, Dobkin D B. Multiple RFID tag plane array effects [J]. IEEE Antennas and Propagation Society Symposium, 2006, 9(14): 1027-1030.

[7] Choi J S, Kang M, Elmasri R, et al. Investigation of impact factor for various performances of passive UHF RFID system [C]//RFID-Technologies and Applications. 2011: 152-159.

[8] Asl S E, Ghasr M T, Zawodniok M, et al. Preliminary study of mutual coupling effect on a passive RFID antenna array [C]//Instrumentation and Measurement Technology Conference.

2013: 138-141.

[9] Marrocco G, Giampaolo E D, Aliberti R. Estimation of UHF RFID reading regions in real environments [J]. IEEE Antennas and Propagation Magazine, 2009, 51(6): 44-57.

[10] 佐磊, 何怡刚, 李兵, 等. 标签密集环境下天线互偶效应研究[J]. 物理学报, 2013, 62(4): 1021-1029.

[11] Yojima H, Tanaka Y, Umeda Y, et al. Analysis of read range for UHF passive RFID tags in close proximity with dynamic impedance measurement of tag ICs [C]//Radio and Wireless Symposium. 2011: 110-113.

[12] Nikitin P V, Rao K V S. Performance limitations of passive UHF RFID systems [C]//IEEE Antennas and Propagation Society. 2006: 1011-1014.

[13] Yojima H, Tanaka Y, Umeda Y, et al. Dynamic impedance measurement of UHF passive RFID tags for sensitivity estimation [C]//Communications and Information Technologies. 2010: 344-349.

[14] Lu F, Chen X S, Ye T T. Performance analysis of stacked RFID tags [C]//IEEE International Conference on RFID. 2009: 330-337.
文章导航

/