通信与信息工程

蓝牙4.0标准规范下的模糊指纹定位算法

展开
  • 1. 上海大学特种光纤与光接入网省部共建重点实验室, 上海200072; 2. 上海大学微电子研究与开发中心, 上海200072;
    3. 上海大学新型显示与系统应用重点实验室, 上海200072

收稿日期: 2012-04-28

  网络出版日期: 2013-04-30

基金资助

上海市科委基金重点资助项目(08706201000, 08700741000); 上海市教委重点学科建设资助项目(J50104)

Fuzzy Fingerprint Location for Bluetooth Specification Version 4.0

Expand
  • 1. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China;
    2. Microelectronic Research and Development Center, Shanghai University, Shanghai 200072, China;
    3. Key Laboratory of Advanced Displays and System Application, Shanghai University, Shanghai 200072, China

Received date: 2012-04-28

  Online published: 2013-04-30

摘要

蓝牙技术的普及以及蓝牙4.0标准规范的提出, 使得利用蓝牙技术实现室内定位具有极其广阔的应用前景.把模糊理论应用于蓝牙室内定位系统, 提出一种模糊指纹定位算法. 基于该算法的定位过程分为离线和在线两个阶段: 离线阶段建立模糊指纹库; 在线阶段对手机客户端进行实时模糊决策定位. 仿真实验结果表明, 该算法的平均定位误差为1.36 m, 相比于传统的指纹标定法, 其定位精度提高约49%, 而计算量缩减至原来的1/c, 其中c为模糊聚类类别数.

本文引用格式

李娟娟1, 张金艺1,2,3, 张秉煜1, 周荣俊2, 唐夏2 . 蓝牙4.0标准规范下的模糊指纹定位算法[J]. 上海大学学报(自然科学版), 2013 , 19(2) : 126 -131 . DOI: 10.3969/j.issn.1007-2861.2013.02.004

Abstract

Popularity of Bluetooth technology and the proposition of Bluetooth Specification Version 4.0 make indoor location have a broad application prospect. The fuzzy theory is applied in indoor location based on Bluetooth, and a fuzzy fingerprint location algorithm is proposed. The location process is divided into two parts: off-line and on-line. A fuzzy fingerprint database is established in the off-line stage, and real-time location of cell phone clients is realized in the on-line stage. Simulation results show that the average location error is 1.36 m. Compared with traditional fingerprint calibration method, location precision is improved by 49% and computation complexity is reduced to 1/c where c is the category number of fuzzy clustering.

参考文献

[1] Lujan S, Suard´?az-Muro J, Cabrera-Lozoya A, et al. Deeploc: discreet indoor people location application [C]// 4th IFIP International Conference on New Technologies, Mobility and Security. 2011: 1-5.

[2] Bhagwat P. Bluetooth: technology for short-range wireless Apps [J]. IEEE Internet Computing, 2001, 5(3): 96-103.

[3] Bieber G, Voskampand J, Urban B. Activity recognition for everyday life on mobile phones [J]. Lecture Notes in Computer Science, 2009, 5615: 289-296.

[4] Bluetooth Special Interest Group. Bluetooth Specification Version 4.0 [EB/OL]. [2012-04-28].https://www.bluetooth.org.
[5] Anastasi G, Bandelloni R, Conti M, et al.Experimenting an indoor Bluetooth-based positioning service [C]// Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops. 2003: 480-483.

[6] Chawathe S S. Beacon placement for indoor localization using Bluetooth [C]// 11th International IEEE Conference on Intelligent Transportation Systems. 2008: 980-985.

[7] Rodas J, Escudero C J, Iglesia D I. Bayesian filtering for a Bluetooth positioning system [C]// IEEE International Symposium on Wireless Communication Systems. 2008: 618-622.

[8] Diaz J J M, De Mau´es R A, Soares R B, et al. BluePass: an indoor Bluetooth-based localization system for mobile applications [C]// 2010 IEEE Symposium on Computers and Communications.2010: 778-783.

[9] Subhan F, Hasbullah H, Rozyyev A, et al. Indoor positioning in Bluetooth networks using fingerprinting and lateration approach [C]// 2011 International Conference on Information Science and Applications. 2011: 1-9.

[10] King T, Lemelson H, Farber A, et al. BluePos: positioning with Bluetooth [C]// Proceedings of IEEE International Symposium on Intelligent Signal Processing. 2009: 55-60.

[11] Subhan F, Hasbullah H, Rozyyev A, et al. Distance estimation in Bluetooth networks using signal parameters [C]// 2010 International Conference on Intelligent and Information Technology. 2010: 28-30.

[12] 陈水利, 李敬功, 王向公. 模糊集理论及其应用[M]. 北京: 科学出版社, 2005: 342-436.

[13] 杨东勇, 顾东袁, 傅晓婕. 一种基于RSSI相似度的室内定位算法[J]. 传感技术学报, 2009, 22(2): 264-268.
文章导航

/