应用计算流体力学(computational fluid dynamics, CFD)、传质学和电化学理论, 建立了二元电解质溶液湍流运动的物理和数学模型. 针对恒电流情况, 通过数值计算研究了电解质溶液的传质和运动特性, 讨论电解质溶液平均浓度场随电解时间的演变规律和电解质湍流流场结构, 分析不同Schmidt 数以及交换电流密度大小对电解质溶液平均浓度场和脉动场的影响.
Based on the computational fluid dynamics (CFD), the mass transfer and electrochemistry theories, a model for turbulent electrode channel flow is established. The turbulent mass transfer in electrolytic processes is predicted with a direct numerical simulation method under galvanostatic condition. This paper investigates the mean concentration and the structure of concentration fluctuating fields for different Schmidt numbers. The effect of concentration boundary condition at the electrodes on the near-wall turbulence statistics is also discussed.
[1] 李荻. 电化学原理[M]. 北京: 北京航空航天大学出版社, 2008.
[2] 杨玉书, 夏之宁. 电极扩散层内物质浓度及分布研究方法进展[J]. 分析化学评述与进展, 2000, 28(7): 897-903.
[3] Newman J. The effect of migration in laminar diffusion layers [J]. International Journal of Heat and Mass Transfer, 1967, 10(7): 983-997.
[4] Smyrl W, Newman J. Double layer structure at the limiting current [J]. Trans Faraday Soc, 1967, 63: 207-216.
[5] Bark F, Alavyoon F. Free convection in an electrochemical system with nonlinear reaction kinetics [J]. Journal of Fluid Mechanics, 1995, 290: 1-28.
[6] Alavyoon F. Unsteady natural convection and mass transfer in copper electrolysis with a supporting electrolyte [J]. Electrochimica Acta, 1992, 37(2): 333-344.
[7] Wallgren C, Bark F, Andersson B. Electrolysis of a binary electrolyte in two-dimensional channel flow [J]. Electrochimica Acta, 1996, 41(18): 2909-2916.
[8] Gurniki F, Fukagata K, Zahrai S, et al. LES of turbulent channel flow of a binary electrolyte [J]. Journal of Applied Electrochemistry, 2000, 30(12): 1335-1343.
[9] Newman J. Engineering design of electrochemical systems [J]. Engineering Chemistry, 1968, 60(4): 12-27.
[10] Gurniki F, Hark F. Turbulent free convection in large electrochemical cells with a binary electrolyte [J]. Journal of Applied Electrochemistry, 1999, 29(1): 27-34.
[11] Kim J, Moin P. Application of a fractionalstep method to incompressible Navier-Stokes equations [J]. Journal of Computational Physics, 1985, 59(2): 308-323.
[12] Verzicco R, Orlandi P. A finite-difference scheme for three-dimensional in compressible flows in cylindrical coordinates [J]. Journal of Computational Physics, 1996, 123(2): 402-414.
[13] Roy S, Gupte Y, Green T A. Flow cell design for metal deposition at recessed circular electrodes and wafers [J]. Chem Eng Sci, 2001, 56(17): 5025.