收稿日期: 2022-07-15
网络出版日期: 2022-11-12
基金资助
上海市科技重大专项资助项目(2021SHZDZX)
Design and implementation of a high-precision bidirectional synchronous rotation
Received date: 2022-07-15
Online published: 2022-11-12
针对精密电机数控领域中 16 位位宽的坐标旋转数字计算机(coordinate rotation digital computer, CORDTC) )算法存在输出时延长、运算精度低、稳定性差等问题, 提出高精度双向同步旋转 CORDIC 算法, 通过角度预处理和区间折叠扩大收敛区间, 迭代过程中采用双向同步旋转与误差均衡来提升算法的精度以及健壮性, 最后根据区间结果进行还原输出. 结果表明: 在硬件实现上, 相比传统算法, 本算法的运算精度分别提高了 76.3%, 最大输出时延降低了 71.4%, 具有高精度、低延时以及稳定等优点.
郑传喜, 古元冬 . 高精度双向同步旋转 CORDIC 算法设计与实现[J]. 上海大学学报(自然科学版), 2022 , 28(5) : 872 -882 . DOI: 10.12066/j.issn.1007-2861.2443
In the field of precision motor numerical control, the 16-bit wide coordinate rotation digital computer (CORDIC) algorithm presents several issues including a long output time, low operational accuracy, and poor stability. This paper proposes a high-precision bidirectional synchronous rotation CORDIC algorithm. Here in, through angle preprocessing and interval folding, the convergence interval is expanded, and the use of bidirectional synchronous rotation and error equalization improves the accuracy and robustness of the algorithm in the iterative process. Finally, the output is restored according to the interval results. In comparison with the traditional algorithm, the operational accuracy is increased by 76.3%, and the maximum output delay is reduced by 71.4% in hardware implementation. Thus, the proposed algorithm demonstrates the advantages of high precision, low latency, and stability.
| [1] | Wang Y S, Xue Y Q, You H, et al. Area-energy efficient CORDICs using new elementary-angle-set and base-2 exponent expansions scheme[J]. IEICE Electronics Express, 2020, 18(2): 20200409. |
| [2] | Aggarwal S, Meher P K, Khare K. Concept, design, and implementation of reconfigurable CORDIC[J]. IEEE Transactions on Very Large Scale Integration Systems, 2016, 24(4): 1588-1592. |
| [3] | Mahdavi H, Timarchi S. Improving architectures of binary signed-digit CORDIC with generic/specific initial angles[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2020, 67(7): 2297-2304. |
| [4] | Mahdavi H, Timarchi S. Area—time—power efficient FFT architectures based on binary-signed-digit CORDIC[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2019, 66(10): 3874-3881. |
| [5] | Kulshreshtha T, Dhar A S. CORDIC-based Hann windowed sliding DFT architecture for real-time spectrum analysis with bounded error-accumulation[J]. IET Circuits Devices & Systems, 2017, 11(5): 487-495. |
| [6] | Shukla R, Ray K C. Low latency hybrid CORDIC algorithm[J]. IEEE Transactions on Computers, 2014, 63(12): 3066-3078. |
| [7] | Garrido M, Kallstrom P, Kumm M, et al. CORDIC Ⅱ: a new improved CORDIC algorithm[J]. IEEE Transactions on Circuits & Systems Ⅱ: Express Briefs, 2016, 63(2): 186-190. |
| [8] | 徐成, 秦云川, 李肯立, 等. 免缩放因子双步旋转 CORDIC 算法[J]. 电子学报, 2014, 42(7): 1441-1445. |
| [9] | 姚亚峰, 冯中秀, 陈朝. 超低时延免迭代 CORDIC 算法[J]. 西安电子科技大学学报(自然科学版), 2017, 44(4): 126-166. |
| [10] | 姚亚峰, 冯中秀, 陈朝. 直接旋转 CORDIC 算法及其高效实现[J]. 华中科技大学学报(自然科学版), 2016, 44(10): 113-118. |
| [11] | Mopuri S, Bhardwaj S, Acharyya A. Coordinate rotation-based design methodology for square root and division computation[J]. IEEE Transactions on Circuits & Systems Ⅱ: Express Briefs, 2019, 66(7): 1227-1231. |
| [12] | Hyukyeon L, Kyungmook O, Minjeong C, et al. Efficient low-latency implementation of CORDIC-based sorted QR decomposition formulti-Gbps MIMO systems[J]. IEEE Transactions on Circuitsand Systems Ⅱ: Express Briefs, 2018, 65(10): 1375-1379. |
| [13] | 邹家轩, 揭灿, 王栋, 等. 双向预判免缩放因子 CORDIC 算法[J]. 哈尔滨工业大学学报, 2021, 53(2): 47-52. |
| [14] | Shiri A. A novel implementation of CORDIC algorithm based on dynamic microrotation generation[J]. International Journal of Electrical and Computer Sciences, 2021, 3(1): 17-27. |
| [15] | Li D, Zhao D. High-throughput low-power area-efficient outphasing modulator based on unrolled and pipelined radix-2 CORDIC[J]. IEEE Transactions on Very Large Scale Integration Systems, 2020, 28(2): 480-491. |
/
| 〈 |
|
〉 |