机器学习

基于特征工程和机器学习的铝基高熵合金稳定性预测

展开
  • 1.上海大学 计算工程与科学学院, 上海 200444
    2.上海大学 材料基因组工程研究院 材料信息与数据科学中心, 上海 200444
    3.之江实验室, 浙江 杭州 311100
戴东波(1977—), 男, 讲师, 博士, 研究方向为材料信息学、数据挖掘等. E-mail: dbdai@shu.edu.cn

收稿日期: 2022-02-25

  网络出版日期: 2022-05-27

基金资助

国家重点研发计划资助项目(2018YFB0704400);云南省重大科技专项资助项目(202002AB080001-2);之江实验室科研攻关资助项目(2021PE0AC02)

Phase stability prediction of hign entropy alloys in aluminum matrix composites based on feature engneering and machine learning

Expand
  • 1. School Computer Engineering and Science, Shanghai University, Shanghai 200444, China
    2. Centerof Materials Informatics and Data Science, Materials Genome Institute, Shanghai University, Shanghai 200444, China
    3. Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China

Received date: 2022-02-25

  Online published: 2022-05-27

摘要

铝基复合材料具有众多优异的性能, 应用前景较好. 以简单稳定相的高熵合金可以作为增强颗粒来制备铝基复合材料, 其各方面力学性能都显著提升. 提出了一种基于结合了特征工程和机器学习的新方法来研究高熵合金相稳定性. 该方法利用特征工程筛选出影响目标属性的重要因素, 然后选择相应的回归方法预测相稳定性. 使用 50% 的数据集进行训练, 并在其余数据集上进行测试验证. 研究结果表明, 该方法在预测高熵合金的相稳定性方面具有较高的准确性($R^{2}$=0.994), 且能辅助找到影响相稳定性的关键因素.

本文引用格式

胡瑞, 刘庆, 张光捷, 李俊杰, 陈晓玉, 魏晓, 戴东波 . 基于特征工程和机器学习的铝基高熵合金稳定性预测[J]. 上海大学学报(自然科学版), 2022 , 28(3) : 476 -484 . DOI: 10.12066/j.issn.1007-2861.2381

Abstract

Aluminum matrix composites offer many excellent properties and wide application prospects. High entropy alloys with a simple and stable phase can be used as reinforcement to prepare aluminum matrix composites with significantly improved performance in all aspects. Herein, a new method based on feature engineering and machine learning is proposed to investigate the phase stability of high entropy alloys. This method uses feature engineering to determine the important factors affecting the target attributes, and then selects the corresponding regression method to predict the phase stability. A model on 50% of the datasets is trained and then the model is verified on other datasets. The results show that this method is highly accurate in predicting the phase stability of high entropy alloys ($R^2=0.994$). In addition, this method can be used to identify key factors affecting phase stability.

参考文献

[1] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93.
[2] Liu Y, Chen J, Li Z, et al. Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites[J]. J Alloys Compd, 2019, 780: 558-564.
[3] Zhu D Z, Ding X, Qi L F, et al. Microstructure and mechanical properties of Al$_{0.25}$Cu$_{0.75}$ FeNiCo HEAs particulates reinforced aluminum alloy[J]. Rare Matel Materials and Engineering, 2017, 46(11): 3400-3404.
[4] Zhang L S, Ma G L, Fu L C, et al. Recent progress in high-entropy alloys[J]. Advanced Materials Research, 2013, 631: 227-232.
[5] Gurao N P, Biswas K. In the quest of single phase multi-component multiprincipal high entropy alloys[J]. J Alloys Compd, 2017, 697: 434-442.
[6] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry & Physics, 2012, 132(2/3): 233-238.
[7] Wang Z, Guo S, Liu C T. Phase selection in high-entropy alloys: from nonequilibrium to equilibrium[J]. JOM, 2014, 66(10): 1966-1972.
[8] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[9] Raghavan R, Kumar H K C, Murty B S, et al. Analysis of phase formation in multi-component alloys[J]. J Alloys Compd, 2012, 544(32): 152-158.
[10] Jiang C, Uberuaga B P. Efficient Ab initio modeling of random multicomponent alloys[J]. Physical Review Letters, 2016, 116(10): 105501.
[11] 黎威, 龙连春, 刘静毅, 等. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测[J]. 物理学报, 2022, 71(6): 060202.
[12] Chang X J, Zeng M Q, Liu K L, et al. Phase engineering of high-entropy alloys[J]. Advanced Materials, 2020, 32: 1907226-1907238.
[13] Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555.
[14] Mohammadi P, Wang Z J. Machine learning for quality prediction in abrasion-resistant material manufacturing process[C]// Electrical & Computer Engineering. 2016.
[15] Li S, Zhang H, Dai D, et al. Study on the factors affecting solid solubility in binary alloys: an exploration by machine learning[J]. J Alloys Compd, 2019, 782: 110-118.
[16] 宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323.
[17] 谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
[18] Tan Y, Li J, Tang S, et al. Design of high-entropy alloys with a single solid-solution phase: average properties vs. their variances[J]. J Alloys Compd, 2018, 742: 430-441.
[19] Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82.
[20] Pilania G, Balacgabdran P V, Kim C, et al. Finding new perovskite halides via machine learning[EB/OL]. [2022-01-05]. https://www.frontiersin.org/articles/10.3389/fmats.2016.00019/full.
[21] Mangal A, Holm E A. A Comparative study of feature selection methods for stress hotspot classification in materials[J]. Integrating Materials & Manufacturing Innovation, 2018, 8: 1-9.
[22] Tang H S, Yao Y W. Research on decision tree in data mining[J]. Application Research of Computers, 2001, 8: 18-19.
[23] Yao D J, Yang J, Zhan X J. Feature selection algorithm based on random forest[J]. Journal of Jilin University, 2014, 1: 142-146.
[24] Marsin S M, Ling S L, Zalilah N, et al. Comparison of signal-to-noise, blank determination, and linear regression methods for the estimation of detection and quantification limits for volatile organic compounds by gas chromatography[EB/OL]. [2022-01-11]. https://xueshu.baidu.com/usercenter/paper/show?paperid=6d31c0611b24694ee820ad145e037e77.
[25] Xu M, Powers D A. Bayesian ridge estimation of age-period-cohort models[M]. Switzerland: Springer International Publishing, 2016.
[26] Ye Y F, Wang Q, Lu J, et al. Design of high entropy alloys: a single-parameter thermodynamic rule[J]. Scr Mater, 2015, 104: 53-55.
[27] Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362.
[28] Zhang H R, Zhang Y, Dai D B, et al. Modelling and optimization of the superconducting transition temperature[J]. Materials & Design, 2016, 92: 371-377.
[29] Tan Y, Li J, Tang Z, et al. Design of high-entropy alloys with a single solid-solution phase: average properties vs. their variances[J]. J Alloys Compd, 2018, 742: 430-441.
[30] Luan H W, Yang S, Li J F, et al. Phase stabilities of high entropy alloys[J]. Scripta Materialia, 2020, 179: 40-44.
文章导航

/