机器学习

基于强化学习的特征选择方法及材料学应用

展开
  • 1.上海大学 计算机工程与科学学院, 上海 200444
    2.上海大学 材料基因组工程研究院 材料信息与数据科学中心, 上海 200444
    3.之江实验室, 浙江 杭州 311100
张瑞(1981—), 女, 副教授,博士, 研究方向为材料信息学、计算机网络、网络安全等. E-mail:ruizhang@shu.edu.cn

收稿日期: 2020-03-20

  网络出版日期: 2022-05-27

基金资助

国家重点研发计划资助项目(2018YFB0704400);云南省重大科技专项资助项目(202102AB080019-3);云南省重大科技专项资助项目(202002AB080001-2);之江实验室科研攻关资助项目(2021PE0AC02);上海张江国家自主创新示范区专项发展资金重大资助项目(ZJ2021-ZD-006)

Feature selection based on reinforcement learning and its application in material informatics

Expand
  • 1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
    2. Center of Materials Informatics and Data Science, Materials Genome Institute, Shanghai University, Shanghai 200444, China
    3. Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China

Received date: 2020-03-20

  Online published: 2022-05-27

摘要

随着大数据、人工智能以及高性能计算的快速发展, 数据驱动的新材料研发成为研究热点. 在对材料数据进行数据挖掘的过程中, 需要对特征集合进行预处理, 通过减少无关冗余特征, 不仅可以避免模型过拟合, 还能提高模型的可解释性. 基于此, 提出了一种基于强化学习的特征选择(feature selection based on reinforcement learning, FSRL) 算法, 将封装式特征选择抽象成机器学习模型和"环境"互动的过程, 并根据利益最大化准则将对应特征加入特征子集中. 同时, 为了提高模型的预测精度, 还提出一种基于符号变换的特征构造方法来生成新的特征. 最后, 将所提出方法应用到非晶合金材料的分类预测任务和铝基复合材料的回归任务中. 实验结果表明, FSRL 算法的分类准确率最高提升了 2.8%, 而在回归任务中, 基于特征构造的 FSRL 算法使得预测精度最高提升了 22.9%.

本文引用格式

张鹏, 张瑞 . 基于强化学习的特征选择方法及材料学应用[J]. 上海大学学报(自然科学版), 2022 , 28(3) : 463 -475 . DOI: 10.12066/j.issn.1007-2861.2375

Abstract

Owing the rapid development of big data, artificial intelligence, and high-performance computing, the research and development of data-driven materials has intensified. During data mining and the machine learning of material data, the feature set must be preprocessed by reducing redundant and irrelevant features, which can not only avoid model overfitting, but also improve the model interpretability. Herein, a feature selection method based on reinforcement learning, known as FSRL, is proposed. By abstracting the encapsulated feature selection method into the interaction between the machine learning model and environment, the corresponding features are selected based on the maximum reward and then incorporated to the feature subset. In addition, we propose a feature construction method based on symbolic transformation to generate new high-order features to improve the prediction accuracy of the model. Subsequently, we apply the abovementioned method to the classification task of amorphous alloy materials and the regression task of aluminum matrix composite materials. Experiments show that our proposed method not only successfully achieve feature transformation in the FSRL, but also afford a 2.8% prediction improvement in the classification task and a 22.9% prediction improvement in the regression task respectively.

参考文献

[1] 周腾, 宋真, Sundmacher K. 大数据为材料研究创造新机遇--材料设计的机器学习方法与应用综述[J]. Engineering, 2019, 5(6): 1017-1026.
[2] Rajan K. Materials informatics: the materials "gene" and big data[J]. Annual Review of Materials Research, 2015, 45: 153-169.
[3] Virshup A M, Contreras-García J, Wipf P, et al. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds[J]. Journal of the American Chemical Society, 2013, 135(19): 7296-7303.
[4] Karak S K, Chatterjee S, Bandopadhyay S. Mathematical modelling of the physical and mechanical properties of nano-Y$_2$O$_3$ dispersed ferritic alloys using evolutionary algorithm-based neural network[J]. Powder Technology, 2015, 274: 217-226.
[5] 计智伟, 胡珉, 尹建新. 特征选择算法综述[J]. 电子设计工程, 2011, 19(9): 46-51.
[6] Huang L L, Tang J, Sun D D, et al. Feature selection algorithm based on multi-label ReliefF[J]. Journal of Computer Applications, 2012, 32(10): 2888-2890.
[7] 吴迪, 郭嗣琮. 改进的 Fisher Score 特征选择方法及其应用[J]. 辽宁工程技术大学学报(自然科学版), 2019, 38(5): 472-479.
[8] 崔鸿雁, 徐帅, 张利锋, 等. 机器学习中的特征选择方法研究及展望[J]. 北京邮电大学学报, 2018, 41(1): 1-12.
[9] Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46: 389-422.
[10] 姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014, 44(1): 137-141.
[11] 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2): 161-166.
[12] 毛勇, 周晓波, 夏铮, 等. 特征选择算法研究综述[J]. 模式识别与人工智能, 2007, 20(2): 211-218.
[13] Bellman R, Kalaba R. Dynamic programming and statistical communication theory[J]. Proceedings of the National Academy of Science of the United States of America, 1957, 43(8): 749-751.
[14] Andreae J H. STELLA: a scheme for a learning machine[J]. IFAC Proceedings Volumes, 1963, 1(2): 497-502.
[15] Sutton R S. Reinforcement learning: past, present and future[C]// Asia-Pacific Conference on Simulated Evolution and Learning. 1999: 195-197.
[16] Watkins C. Learning from delayed rewards[D]. Cambridge: University of Cambridge, 1989.
[17] Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with deep reinforcement learning[C]// NIPS. 2013.
[18] Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms[C]// International Conference on Machine Learning. 2014: 387-395.
[19] Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double $q$- learning[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2016.
[20] 唐振韬, 邵坤, 赵冬斌, 等. 深度强化学习进展: 从 AlphaGo 到 AlphaGo Zero[J]. 控制理论与应用, 2017, 34(12): 1529-1546.
[21] Watkins C, Dayan P. Technical note: $Q$-learning[J]. Machine Learning, 1992, 8(3/4): 279-292.
[22] 高阳, 陈世福, 陆鑫. 强化学习研究综述[J]. 自动化学报, 2004(1): 86-100.
[23] 刘路放, 冯博琴. 符号回归的枚举原型算法及其匹配算法研究[J]. 西安交通大学学报, 2000, 34(3): 1-4.
[24] 谢锦涛, 何丰, 王如岑. Double DQN 在坦克对战游戏中的应用[J]. 福建电脑, 2020, 36(5): 120-121.
[25] 胡壮麒, 张海峰. 块状非晶合金及其复合材料研究进展[J]. 金属学报, 2010, 46(11): 1391-1421.
[26] 欧阳求保, 张国定, 张荻. 非连续增强铝基复合材料的研究与应用进展[J]. 中国材料进展, 2010, 29(4): 36-40.
文章导航

/