研究论文

金属有机骨架衍生纳米多孔碳和钛酸锂构筑高性能锂离子混合电容器

展开
  • 上海大学 环境与化学工程学院, 上海 200444
李珍(1972—), 女, 研究员, 博士生导师, 博士, 研究方向为环境和能源无机纳米功能材料. E-mail: lizhen@shu.edu.cn

收稿日期: 2019-04-19

  网络出版日期: 2019-05-14

基金资助

国家自然科学基金资助项目(21471098);长江学者和创新团队发展计划资助项目(IRT13078)

High-performance Li-ion hybrid capacitor with metal organic framework-derived porous carbon nanomaterial and lithium titanate

Expand
  • School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

Received date: 2019-04-19

  Online published: 2019-05-14

摘要

锂离子混合电容器兼具锂离子电池的高能量密度特性和超级电容器的高功率密度特性,是一种极具应用前景的新型储能器件.首先通过高温热解金属有机骨架 (metal organic framework,MOF) 前驱体的方法制备了 MOF 衍生的纳米多孔碳材料 (碳化后的沸石咪唑酯骨架结构-8(carbonizedzeolitic imidazolate framework-8, cZIF-8)),该材料具有高比表面积、较优异的孔隙率、良好的热稳定性和高导电性能.以电容型 cZIF-8 电极为正极,电池型钛酸锂 (Li4Ti5O12, LTO) 电极为负极,构筑一种新型的 cZIF-8//LTO 锂离子混合电容器.组装的设备最高能量密度达到 44 W·h·kg-1,最高功率密度为 5 387 W·h·kg-1,其能量密度明显高于 cZIF-8//cZIF-8 超级电容器 (16.6 W·h·kg-1. 更为重要的是,cZIF-8//LTO 锂离子混合电容器具有较优异的循环性能, 在 2 A·g-1 的高电流密度下循环 10000 次后容量保留率高达 85.4%.这种基于 MOFs 材料的锂离子混合电容器能使电化学储能器件在不降低功率性能的情况下有效提升能量密度.

本文引用格式

姚伟伟, 毛剑, 张臣, 李珍, 吴明红 . 金属有机骨架衍生纳米多孔碳和钛酸锂构筑高性能锂离子混合电容器[J]. 上海大学学报(自然科学版), 2020 , 26(6) : 963 -971 . DOI: 10.12066/j.issn.1007-2861.2143

Abstract

Li-ion hybrid capacitors, which combine the high energy densities of Li-ion batteries and high power densities of super capacitors, are a new type of energy storage device with large application potentials. In this study, a porous carbon nanomaterial (carbonized zeolitic imidazolate framework-8 (cZIF-8)) derived from metal organic frameworks (MOFs) was synthesised by pyrolysis of a MOF precursor at a high temperature. This carbon material had a large specific surface area, excellent porosity, good thermal stability, and high conductivity. A new type of Li-ion hybrid capacitor (cZIF-8//lithium titanate (LTO)) was constructed using a capacitor electrode based on cZIF-8 as a positive electrode and battery electrode based on LTO as a negative electrode. The assembled device had highest energy density of 44 W·h·kg-1 and power density of 5387 W$\cdot$kg$^{-1}$, significantly higher than that of a cZIF-8//cZIF-8 supercapacitor (16.6 W·h·kg-1). The Li-ion hybrid capacitor (cZIF-8//LTO) also exhibited a good cyclic performance (85.4% of the initial value after 10000 cycles) at a high current density of 2 A·g-1. This MOF-based Li-ion hybrid capacitor enables to effectively increase the energy density of the electrochemical energy storage device without reducing the power capability.

参考文献

[1] Getman R B, Bae Y S, Wilmer C E, et al. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks[J]. Chemical Reviews, 2012,112(2):703-723.
[2] Dong M J, Zhao M, Ou S, et al. A luminescent Dye@MOF platform: emission fingerprint relationships of volatile organic molecules[J]. Angewandte Chemie: International Edition, 2014,53(6):1575-1579.
[3] Jiang H L, Feng D, Liu T F, et al. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks[J]. Journal of the American Chemical Society, 2012,134(36):14690-14693.
[4] Gao X T, Liu Y T, Zhu X D, et al. V$_2$O$_5$ nanoparticles confined in three-dimensionally organized, porous nitrogen-doped graphene frameworks: flexible and free-standing cathodes for high performance lithium storage[J]. Carbon, 2018,140:218-226.
[5] Kim Y, Han H, Noh Y, et al. Honeycomb-like nitrogen-doped carbon 3D nanoweb@Li2S cathode material for use in lithium sulfur batteries[J]. Chemsuschem, 2019,12(4):824-829.
[6] Gao M, Liu X W, Yang H, et al. FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries[J]. Science China: Chemistry, 2018,61(9):1151-1158.
[7] Chaikittisilp W, Hu M, Wang H, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications, 2012,48(58):7259-7261.
[8] Young C, Salunkhe R R, Tang J, et al. Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte[J]. Physical Chemistry Chemical Physics, 2017,19(33):22596.
[9] Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synjournal[J]. Journal of the American Chemical Society, 2008,130(16):5390-5395.
[10] Wu H B, Xia B Y, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications, 2015,6:6512.
[11] Kim H, Park K Y, Cho M Y, et al. High-performance hybrid supercapacitor based on graphene-wrapped Li$_4$Ti$_5$O$_{12}$ and activated carbon[J]. Chemelectrochem, 2014,1(1):125-130.
[12] Kaftelen H, Tuncer M, Tu S, et al. Mn-substituted spinel Li$_4$Ti$_5$O$_{12}$ materials studied by multifrequency EPR spectroscopy[J]. Journal of Materials Chemistry A, 2013,1(34):9973-9982.
[13] Yu J, Mu C, Yan B Y, et al. Nanoparticle/MOF composites: preparations and appli-cations[J]. Materials Horizons, 2017,4(4):557-569.
[14] Zou F, Chen Y M, Liu K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage[J]. Acs Nano, 2016,10(1):377-386.
[15] Jain A, Aravindan V, Jayaraman S, et al. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors[J]. Scientific Reports, 2013,3:6.
文章导航

/