研究论文

碲锌镉表面钝化层深度剖析及钝化工艺优化

展开
  • 上海大学 材料科学与工程学院,上海 200444

收稿日期: 2018-04-02

  网络出版日期: 2018-12-21

基金资助

国家自然科学基金资助项目(11675099)

Passivation composition analysis and passivation process optimization of CdZnTe

Expand
  • School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

Received date: 2018-04-02

  Online published: 2018-12-21

摘要

采用扫描电子显微镜(scanning electron microscopy,SEM)、X 射线光电子能谱 (X-ray photoelectron spectroscopy,XPS) 和电流-电压 (current-voltage, I-V)曲线等测试方法,分析了 CdZnTe 晶片两步溶液法钝化工艺参数对晶片的表面形貌、表面成分和电学性能的影响。研究发现,两步溶液法的最佳钝化时间为 30 min,此时漏电流接近最小。CdZnTe 钝化后经 100 ℃、60 min 的热处理,金相和 SEM 显示钝化层表面的形貌更为均匀致密,XPS 深度剖析表明化学反应中间产物分解较为完全,TeO2 含量增多,I-V 测试显示热处理后漏电流减小较为明显,有效提高了探测器的性能。

本文引用格式

张滢, 闵嘉华, 梁小燕, 刘兆鑫, 李明, 张继军, 张家轩, 张德龙, 沈悦, 王林军 . 碲锌镉表面钝化层深度剖析及钝化工艺优化[J]. 上海大学学报(自然科学版), 2020 , 26(4) : 538 -543 . DOI: 10.12066/j.issn.1007-2861.2057

Abstract

The influence of different passivation time and annealing on the surface morphology, electrical properties and composition of CdZnTe is studied via scanning electron microscopy (SEM), current-voltage (I-V) and X-ray photoelectron spectroscopy (XPS). The result shows that the optimum passivation time for two-step passivation method is 30 minutes, and the leakage current is close to the minimum. After the wafers are annealed for 60 minutes at 100 ℃, metallography and SEM show that the surface morphology after heat treatment is to a more considerable degree in uniformity and density. XPS depth analysis shows that chemical reaction intermediate decomposition is relatively complete and that TeO2 content is increased. I-V test shows that the leakage current is reduced, which effectively improves the detector's performance.

参考文献

[1] Liang X Y, Min J H, Yang L Q, et al. Fabrication and characterization of Au/Zn composite electrode on p-CdZnTe (111) B plane[J]. Physica Status Solidi, 2016,13(7/8/9):486-489.
[2] Yang L, Min J, Liang X, et al. Investigation on the contact interface of Au/Zn on CdZnTe (111) B surface[J]. Materials Science in Semiconductor Processing, 2017,67:175-180.
[3] Ling Y, Min J, Liang X, et al. Carrier transport performance of Cd$_{0.9}$Zn$_{0.1}$Te detector by direct current photoconductive technology[J]. Journal of Applied Physics, 2017,121(3):034502.
[4] Aqariden F, Tari S, Nissanka K, et al. Influence of surface polishing on the structural and electronic properties of CdZnTe surfaces[J]. Journal of Electronic Materials, 2012,41(10):2893-2898.
[5] 刘勇, 朱世富, 赵北君, 等. CdZnTe 晶片表面钝化后的热处理研究[J]. 人工晶体学报, 2011,40(5):1107-1110.
[6] Chattopadhyay K, Hayes M, Ndap J O, et al. Surface passivation of cadmium zinc telluride radiation detectors by potassium hydroxide solution[J]. Journal of Electronic Materials, 2000,29(6):708-712.
[7] Hossain A, Dowdy A, Bolotnikov A E, et al. Topographic evaluation of the effect of passivation in improving the performance of CdZnTe detectors[J]. Journal of Electronic Materials, 2014,43(8):2941-2946.
[8] Sang W B, Wang K S, Min J H, et al. A novel two-step chemical passivation process for CdZnTe detectors[J]. Semiconductor Science & Technology, 2005,20(5):343-346.
[9] ?zsan M E, Sellin P J, Veeramani P, et al. Chemical etching and surface oxidation studies of cadmium zinc telluride radiation detectors[J]. Surface & Interface Analysis, 2010,42(6/7):795-798.
[10] Zázvorka J, Franc J, Statelov M, et al. Optical and electrical study of CdZnTe surfaces passivated by KOH and NH$_{4}$F solutions[J]. Applied Surface Science, 2016,389:1214-1219.
[11] Pekarek J, Belas E, Zazvorka J. Long-term stable surface treatments on CdTe and CdZnTe radiation detectors[J]. Journal of Electronic Materials, 2017,46(4):1-7.
[12] Hossain A, Bolotnikov A E, Camarda G S, et al. Novel approach to surface processing for improving the efficiency of CdZnTe detectors[J]. Journal of Electronic Materials, 2014,43(8):2771-2777.
文章导航

/