智能海面机器人

偏心桨机构水下旋转桨式步态水动力建模

展开
  • 上海大学 机电工程与自动化学院, 上海 200444
崔建祥(1989—), 男, 实验师, 研究方向为海上智能装备设计. E-mail: cuijianxiang@shu.edu.cn

收稿日期: 2019-01-11

  网络出版日期: 2019-07-05

基金资助

国家自然科学基金资助项目(U1613226);国家自然科学基金面上资助项目(61673254)

Hydrodynamic modeling of an eccentric paddle mechanism with rotational paddling gait

Expand
  • School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Received date: 2019-01-11

  Online published: 2019-07-05

摘要

为提高两栖机器人在复杂环境下的通过能力,在前期研究中提出了基于偏心桨 (eccentric paddle,ePaddle) 机构的复合型两栖推进机构 ePaddle,实现了多种陆上及水下运动步态.为探究该机构执行水下旋转桨式步态时的水动力特性,构建了基于 Morison 方程的推力预测模型,分析了滑差率、偏心距等配置参数对机构推力特性的影响,并且通过实验验证了模型的准确性.根据理论模型和实验结果对机构水下旋转桨式步态的使用提出了合理的应用建议.

本文引用格式

李小毛, 彭宇, 李天波, 陈俊杰, 徐佳, 崔建祥 . 偏心桨机构水下旋转桨式步态水动力建模[J]. 上海大学学报(自然科学版), 2020 , 26(6) : 884 -895 . DOI: 10.12066/j.issn.1007-2861.2167

Abstract

In previous work, an eccentric paddle (ePaddle) mechanism has been proposed to improve the mobility of amphibious robot under challenging environments, which can execute various terrestrial and aquatic gaits. In this paper, to investigate the hydrodynamic characteristics of rotational paddling gait, a hydrodynamic model is presented based on Morison equation for analyzing the effects on thrust characteristics with different configuration of parameters such as slip ratio, eccentric distance, etc. The accuracy of the model has been verified by the experiments. Based on the theoretical model and experimental results, the reasonable application suggestions for the rotational paddling gait of the ePaddle are presented.

参考文献

[1] Yang Y, Geng Z, Zhang J Q, et al. Design, modeling and control of a novel amphibious robot with dual-swing-legs propulsion mechanism[C]// IEEE/RSJ Conference on Intelligent Robots and Systems. 2015: 559-566.
[2] Yamada H, Chigisaki S, Mori M. Development of amphibious snake-like robot ACM-R5[C]// Proceedings of the 36th International Symposium on Robotics. 2005: 133.
[3] Low K H, Zhou C, Ong T W, et al. Modular design and initial gait study of an amphibian robotic turtle[C]// IEEE International Conference on Robotics and Biomimetics. 2008: 535-540.
[4] Jun B H, Shim H, Kim B, et al. Development of seabed walking robot CR200[C]// MTS/IEEE Oceans. 2013: 1-5.
[5] Crespi A, Karakasiliotis K, Guignard A, et al. Salamandra robotica Ⅱ: an amphibious robot to study salamander-like swimming and walking gaits[J]. IEEE Transactions on Robotics, 2013,29(2):308-320.
[6] Georgiades C, Nahon M, Buehler M. Simulation of an underwater hexapod robot[J]. Ocean Engineering, 2009,36(1):39-47.
[7] Li M, Guo S, Hirata H, et al. A roller-skating/walking mode-based amphibious robot[J]. Robotics and Computer Integrated Manufacturing, 2017,44:17-29.
[8] Yu J, Ding R, Yang Q, et al. On a Bio-inspired amphibious robot capable of multimodal motion[J]. IEEE/ASME Asme Transactions on Mechatronics, 2012,17(5):847-856.
[9] Liu J, Yang J. Design and mode switching of wheel-leg adaptable amphibious robot[C]// 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). 2017: 270-274.
[10] Shen Y, Pu H, Sun Y, et al. Improved effective design of the eccentric paddle mechanism for amphibious robots[C]// Proceedings of IEEE International Conference on Robotics and Biomimetics. 2014: 437-442.
[11] Pu H, Zhao J, Sun Y, et al. Non-reciprocating legged gait for robot with epicy-clic-gear-based eccentric paddle mechanism[J]. Robotics and Autonomous Systems, 2015,68:36-46.
[12] Pu H, Sun Y, Ma S, et al. Modeling of theoscil-lating-paddling gait for an ePaddle locomotion mechanism[C]// Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA2013). 2013: 3429-3435.
[13] Pu H, Sun Y, Ma S, et al. Experimental study on the oscillating paddling gait of an ePaddle mechanism with flexible configuration[J]. Advanced Robotics, 2014,28(11):769-780.
[14] Dudek G, Giguere P, Prahacs C, et al. AQUA: an amphibious autonomous robot[J]. Computer, 2007,40(1):46-53.
[15] Lighthill M J. large-amplitude elongated-body theory of fish locomotion[J]. Proceedings of the Royal Society of London B: Biological Sciences, 1971,179(1055):125-138.
[16] Park Y J, Jeong U, Lee J, et al. Kinematic condition for maximizing the thrust of a robotic fish using a compliant caudal fin[J]. IEEE Transactions on Robotics, 2012,28(6):1216-1227.
[17] 王海龙. 仿海蟹机器人游泳桨水动力性能及浮游步态规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[18] Sun Y, Ma S, Luo X. Design of an eccentric paddle locomotion mechanism for amphibious robots[C]// Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics. 2010: 1098-1103.
[19] Shen Y, Pu H, Sun Y, et al. Generating vectored thrust with the rotational paddling gait of an ePaddle-EGM mechanism: modeling and experimental verifications[J]. IEEE Journal of Oceanic Engineering, 2016(99):1-10.
[20] Kelasidi E, Pettersen K Y, Gravdahl J T, et al. Modeling of underwater snakerobots[C]// Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA2014). 2014: 4540-4547.
[21] 项贻强, 张科乾. 基于Morison方程分层积分计算悬浮隧道的波浪力[J]. 浙江大学学报(工学版), 2011,45(8):1399-1404.
文章导航

/