收稿日期: 2018-04-15
网络出版日期: 2018-12-23
基金资助
国家自然科学基金资助项目(11572184);国家自然科学基金资助项目(11172164);国家重点基础研究发展计划(973计划)资助项目(2012CB725404)
Self-organization phenomena of bidirectional pedestrian flows in a channel with obstacles
Received date: 2018-04-15
Online published: 2018-12-23
采用改进社会力模型研究了有障碍物的通道内双向行人流的自组织现象. 在模型的自驱力项中同时考虑了静态场和视野场的作用. 每个行人根据静态场确定期望运动方向, 并根据其视野场确定可行的路径. 通过数值模拟研究了周期性或开放性边界条件下圆柱和隔栏的不同放置方式对行人流的影响. 虽然存在障碍物, 自组织成行仍是双向行人流的主要特征, 而通道内则呈现了更丰富的行人流运动斑图. 模拟结果表明: 在周期性边界条件下障碍物往往会引起通道堵塞, 降低行人的平均速度; 在开放性边界条件下, 水平壁上设置短的垂直隔栏可以减少行人的行程时间, 并使发生堵塞的概率减小.
吴成, 蓝冬恺, 董力耘 . 有障碍物通道内双向行人流的自组织现象[J]. 上海大学学报(自然科学版), 2020 , 26(3) : 382 -392 . DOI: 10.12066/j.issn.1007-2861.2054
In this paper, an extended social force model is used to investigate self-organization phenomena of bidirectional pedestrian flows in a channel with obstacles. In the model, both the static floor field and the view field have been taken into account. Then each pedestrian can determine his/her desired walking direction according to both global and local information. Case studies have been performed on different arrangements of cylinders or fences under periodic or open conditions. More self-organization flow patterns of pedestrians have been observed due to the existence of obstacles. It is found that obstacles usually trigger congestion and reduce the average velocity under periodic boundary condition. Under open boundary condition, it is found that short vertical fences mounted on the walls may reduce the travel time. Furthermore, such a setting of two fences leads to a smaller probability of the occurrence of congestion.
| [1] | Helbing D, Buzna L, Johansson A, et al. Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions[J]. Transportation Science, 2005,39(1):1-24. |
| [2] | Schadschneider A, Klingsch W, Klüpfel H, et al. Evacuation dynamics: empirical results, modeling and applications[M]. New York: Springer, 2011: 3124. |
| [3] | Helbing D, Molnár P. Social force model for pedestrian dynamics[J]. Physical Review E, 1995,51(5):4282-4286. |
| [4] | Blue V J, Adler J L. Cellular automata microsimulation for modeling bi-directional pedestrian walkways[J]. Transportation Research Part B: Methodological, 2001,35(3):293-312. |
| [5] | Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow[J]. Physica A, 2013,267(3/4):487-498. |
| [6] | Helbing D, Molnár P, Farkas I J, et al. Self-organizing pedestrian movement[J]. Environment and Planning B: Planning and Design, 2001,28(3):361-383. |
| [7] | Tajima Y, Takimoto K, Nagatani T. Pattern formation and jamming transition in pedestrian counter flow[J]. Physica A, 2002,313(3):709-723. |
| [8] | Lakoba T I, Kaup D J, Finkelstein N M. Modifications of the Helbing-Molnár-Farkas-Vicsek Social force model for pedestrian evolution[J]. Simulation Transactions of the Society for Modeling and Simulation International, 2005,81(5):339-352. |
| [9] | Parisi D R, Gilman M, Moldovan H. A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions[J]. Physica A, 2009,388(17):3600-3608. |
| [10] | Moussa?d M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(17):6884. |
| [11] | Wang Q L, Chen Y, Dong H R, et al. A new collision avoidance model for pedestrian dynamics[J]. Chinese Physics B, 2015,24(3):453-462. |
| [12] | Xiao Y, Gao Z Y, Qu Y, et al. A pedestrian flow model considering the impact of local density: voronoi diagram based heuristics approach[J]. Transportation Research Part C, 2016,68:566-580. |
| [13] | Jiang Y Q, Chen B K, Wang B H, et al. Extended social force model with a dynamic navigation field for bidirectional pedestrian flow[J]. Frontiers of Physics, 2017,12(5):181-189. |
| [14] | Kuang H, Li X, Song T, et al. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model[J]. Physical Review E, 2008,78(2):066117. |
| [15] | Yang L, Li J, Liu S. Simulation of pedestrian counter-flow with right-moving preference[J]. Physica A, 2008,387(13):3281-3289. |
| [16] | Nowak S, Schadschneider A. A cellular automaton approach for lane formation in pedestrian counterflow[C]// Traffic and Granular Flow'11 Springer Berlin Heidelberg. 2013: 149-160. |
| [17] | Tao Y Z, Dong L Y. A Cellular Automaton model for pedestrian counterflow with swapping[J]. Physica A, 2017,475:155-168. |
| [18] | Nowak S, Schadschneider A. Quantitative analysis of pedestrian counterflow in a cellular automaton model[J]. Physical Review E, 2012,85(6):066128. |
| [19] | Burstedde C, Klauck K, Schadschneider A, et al. Simulation of pedestrian dynamics using a two-dimensional cellular automaton[J]. Physica A, 2001,295(3):507-525. |
| [20] | Kirchner A, Schadschneider A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics[J]. Physica A, 2002,312(1):260-276. |
| [21] | Varas A, Cornejo M D, Mainemer D, et al. Cellular automaton model for evacuation process with obstacles[J]. Physica A, 2007,382(2):631-642. |
| [22] | Huang H J, Guo R Y. Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits[J]. Physical Review E, 2008,78(1):021131. |
| [23] | Suma Y, Yanagisawa D, Nishinari K. Anticipation effect in pedestrian dynamics: modeling and experiments[J]. Physica A, 2012,391(1/2):248-263. |
| [24] | Ma J, Song W G, Zhang J, et al. $k$-Nearest-Neighbor interaction induced self-organized pedestrian counter flow[J]. Physica A, 2010,389(10):2101-2117. |
| [25] | Guo R Y, Huang H J. Route choice in pedestrian evacuation: formulated using a potential field[J]. Journal of Statistical Mechanics: Theory and Experiment, 2011,2011(4):P04018. |
| [26] | Tian H H, Dong L Y, Xue Y. Influence of the exits' configuration on evacuation process in a room without obstacle[J]. Physica A, 2015,420:164-178. |
| [27] | Lu L, Chan C Y, Wang J, et al. A study of pedestrian group behaviors in crowd evacuation based on an extended floor field cellular automaton model[J]. Transportation Research Part C, 2017,81:317-329. |
| [28] | Zhang P, Jian X X, Wong S C, et al. Potential field cellular automata model for pedestrian flow[J]. Physical Review E, 2012,85(2):021119. |
| [29] | Jian X X, Wong S C, Zhang P, et al. Perceived cost potential field cellular automata model with an aggregated force field for pedestrian dynamics[J]. Transportation Research Part C, 2014,42(2):200-210. |
| [30] | Zhang Q. Simulation model of bi-directional pedestrian considering potential effect ahead and behind[J]. Physica A, 2015,419:335-348. |
| [31] | Guo W, Wang X L, Zheng X P. Lane formation in pedestrian counterflows driven by a potential field considering following and avoidance behaviours[J]. Physica A, 2015,432:87-101. |
| [32] | Dong L Y, Lan D K, Li X. Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel[J]. Chinese Physics B, 2016,25(9):591-597. |
| [33] | Guo R Y. Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck[J]. Physica A, 2014,415:428-439. |
| [34] | Lan D K, Wu C, Dong L Y. The extended social force model for pedestrian flow with considering the floor field and the view field[C]// Smart Transportation-Proceedings of the 21st International Conference of HKSTS. 2016: 107. |
| [35] | Anvari B Bell M G H Sivakumar A, et al. Modelling shared space users via rule-based social force model[J]. Transportation Research Part C, 2015,51:83-103. |
| [36] | Kretz T, Grünebohm A, Schreckenberg M. Experimental study of pedestrian flow through a bottleneck[J]. Journal of Statistical Mechanics: Theory and Experiment, 2006,2006(5):P10014. |
| [37] | Seyfried A, Boltes M, K?hler J, et al. Enhanced empirical data for the fundamental diagram and the flow through bottlenecks[C]// Pedestrian and Evacuation Dynamics 2008. 2010:145-156. |
| [38] | M?i M, Tsukaguchi H. A new method for evaluation of level of service in pedestrian facilities[J]. Transportation Research Part A General, 1987,21(3):223-234. |
| [39] | Older S J. Movement of pedestrians on footways in shopping streets[J]. Traffic Engineering and Control, 1967,10(4):160-163. |
| [40] | Kretz T, Grunebohm A, Kaufman M, et al. Experimental study of pedestrian counterflow in a corridor[J]. Journal of Statistical Mechanics: Theory and Experiment, 2006,2006(10):P10001. |
/
| 〈 |
|
〉 |