上海大学学报(自然科学版) ›› 2018, Vol. 24 ›› Issue (3): 446-455.doi: 10.12066/j.issn.1007-2861.1838

• 研究论文 • 上一篇    下一篇

基于极限学习机的非平稳下击暴流风速预测

钟旺, 李春祥()   

  1. 上海大学 土木工程系, 上海 200444
  • 收稿日期:2016-07-17 出版日期:2018-06-15 发布日期:2018-06-28
  • 通讯作者: 李春祥 E-mail:li-chunxiang@vip.sina.com
  • 基金资助:
    国家自然科学基金资助项目(51378304)

Predicting of nonstationary downburst wind velocity based on extreme learning machines

ZHONG Wang, LI Chunxiang()   

  1. Department of Civil Engineering, Shanghai University, Shanghai 200444, China
  • Received:2016-07-17 Online:2018-06-15 Published:2018-06-28
  • Contact: LI Chunxiang E-mail:li-chunxiang@vip.sina.com

摘要:

分别运用经验模态分解(empirical mode decomposition, EMD)法和快速集合经验模态分解(fast ensemble empirical mode decomposition, FEEMD)法将非平稳下击暴流风速分解为一系列稳态序列集,即固有模态分量. 建立极限学习机(extreme learning machines, ELM)风速预测模型(EMD-ELM)和快速EMD-ELM(FEEMD-ELM),分别对分解后的非平稳脉动风速训练集和测试集进行预测. 同时,将EMD和FEEMD与基于粒子群优化(particle swarm optimization, PSO)最小二乘支持向量机(least squares support vector machine, LSSVM)进行混合, 形成EMD-PSO-LSSVM和FEEMD-PSO-LSSVM混合模型算法. 通过比较这4种预测算法的结果发现,基于EMD-ELM和FEEMD-ELM的非平稳下击暴流风速预测模型更为准确高效,其中FEEMD-ELM模型预测最佳.

关键词: 极限学习机, 下击暴流, 非平稳风速预测, 经验模态分解, 最小二乘支持向量机

Abstract:

Using the empirical mode decomposition (EMD) and fast ensemble empirical mode decomposition (FEEMD), respectively, a nonstationary downburst wind velocity sample can be decomposed into a series of stationary sequence sets, namely, intrinsic mode functions. Extreme learning machines based on EMD and FEEMD, referred to as the EMD-ELM and FEEMD-ELM, are proposed to forecast the training and testing sets, both partitioned to stationary sequence sets. Meanwhile, combining EMD and FEEMD with a least squares support vector machine (SVM) based on particle swarm optimization, EMD-PSO-LSSVM and FEEMD-PSO-LSSVM algorithms are obtained. Comparison of these four prediction algorithms shows that EMD-ELM and FEEMD-ELM are more accurate and efficient in predicting nonstationary downburst wind velocity, while FEEMD-ELM is the best.

Key words: extreme learning machine, downburst wind, prediction of nonstationary wind velocity, empirical mode decomposition, least squares support vector machine

中图分类号: