上海大学学报(自然科学版) ›› 2011, Vol. 17 ›› Issue (3): 263-265.doi: doi:10.3969/j.issn.1007-2861.2011.03.009

• 数理化科学 • 上一篇    下一篇

矩阵方程的三对角中心对称最小二乘解

  

  1. 1.上海大学 理学院,上海 200444; 2.遵义师范学院 数学系,贵州 遵义 563000
  • 出版日期:2011-06-24 发布日期:2011-06-24
  • 通讯作者: 王卿文(1964~),男,教授,博士生导师,研究方向为矩阵代数. Email:wqw@shu.edu.cn
  • 作者简介:王卿文(1964~),男,教授,博士生导师,研究方向为矩阵代数. Email:wqw@shu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(60672160);遵义师范学院科研基金资助项目(2009010,11KY14)

Centrosymmetric Tridiagonal Least Square Solution to Matrix Equation

  1. 1. College of Sciences, Shanghai University, Shanghai 200444, China;
    2. Department of Mathematics, Zunyi Normal College, Zunyi 563000, Guizhou, China
  • Online:2011-06-24 Published:2011-06-24

摘要: 给出矩阵方程〖WTHX〗AX〖WTBX〗=〖WTHX〗B〖WTBZ〗存在三对角中心对称解的充分必要条件,并且给出〖WTHX〗AX〖WTBX〗=〖WTHX〗B〖WTBZ〗的特殊最小二乘解,即对任意给定〖WTHX〗A,B〖WTBX〗∈〖WTHX〗R〖WTBX〗m×n,〖WTBZ〗寻求三对角中心对称矩阵〖WTHX〗X(X〖WTBX〗∈〖WTHX〗R〖WTBX〗n×n),〖WTBZ〗使得‖〖WTHX〗AX〖WTBX〗-〖WTHX〗B〖WTBX〗‖〖WTBZ〗最小.

关键词: 矩阵方程, 三对角中心对称矩阵, 最小二乘解

Abstract: The matrix equation 〖WTHX〗AX〖WTBX〗=〖WTHX〗B〖WTBZ〗 is considered, and a necessary and sufficient condition for the existence of centrosymmetric tridiagonal solutions is given. A new result of the following problem is obtained which related to the leastsquares solutions of 〖WTHX〗AX〖WTBX〗=〖WTHX〗B〖WTBZ〗 for 〖WTHX〗X〖WTBZ〗: given 〖WTHX〗A, B〖WTBZ〗∈〖WTHX〗R〖WTBX〗m×n,〖WTBZ〗 find a centrosymmetric tridiagonal matrix 〖WTHX〗X〖WTBZ〗∈〖WTHX〗R〖WTBX〗m×n〖WTBZ〗 such that ‖〖WTHX〗AX〖WTBZ〗-〖WTHX〗B〖WTBZ〗‖ is minimal.

Key words:  matrix equation, centrosymmetric tridiagonal matrix, leastsquares solution

中图分类号: