上海大学学报(自然科学版) ›› 2010, Vol. 16 ›› Issue (3): 242-247.doi: O175.12

• 数理化科学 • 上一篇    下一篇

二维环面及平面分片抛物型映射的若干动力学性质

林聪萍,傅新楚,王凯华   

  1. (1.浙江师范大学 数理与信息工程学院,浙江 金华 321004; 2.上海大学 理学院,上海 200444)
  • 出版日期:2010-06-28 发布日期:2010-06-28
  • 通讯作者: 傅新楚(1961~),男,教授,博士,研究方向为动力系统. Email:xcfu@shu.edu.cn
  • 作者简介:傅新楚(1961~),男,教授,博士,研究方向为动力系统. Email:xcfu@shu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(10672146)

Dynamical Properties of Two-Torus and Planar Piecewise Parabolic Maps

LIN Cong-ping,FU Xin-chu,WANG Kai-hua   

  1. (1. College of Mathematics Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; 
    2. College of Sciences, Shanghai University, Shanghai 200444, China)
  • Online:2010-06-28 Published:2010-06-28

摘要:

对于二维环面抛物型映射,给出部分可逆环面抛物型映射的同构分类,证明了极限圆映射有稠密的周期点集,且某些有理抛物型映射具有任意周期的周期点.对于整数抛物型映射,证明了其拓扑熵为零.通过比较极限圆映射分别在环面拓扑和平面拓扑下的符号熵、复杂度,展现了同一个映射在不同拓扑下量的差异. 

关键词: 环面抛物型映射;平面分片抛物型映射;周期性;符号熵;复杂度

Abstract:

This paper discusses isomorphism between invertible torus parabolic maps and periodicity where periodic point sets in horocyclic case are dense in the torus topology, and some semi-rational cases possess periodic points of all periods. For the integral parabolic maps on the torus, the topological entropy is zero. Symbolic entropy and complexity of planar piecewise parabolic maps are investigated. Their difference under the plane topology and the torus topology respectively for the same torus parabolic maps is also discussed.

Key words: 2-torus parabolic map; planar piecewise parabolic map; periodicity; symbolic entropy; complexity