上海大学学报(自然科学版)

• 通信与信息工程 • 上一篇    下一篇

关于孤立数的一些新结果

周斌彬   

  1. 上海大学 理学院,上海 200444
  • 收稿日期:2007-06-01 修回日期:1900-01-01 出版日期:2008-08-27 发布日期:2008-08-27
  • 通讯作者: 周斌彬

New Results of Anti-Sociable Numbers

ZHOU Bin-bin   

  1. College of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2007-06-01 Revised:1900-01-01 Online:2008-08-27 Published:2008-08-27
  • Contact: ZHOU Bin-bin

摘要: 完全数、相亲数以及孤立数一直是数论研究的一个重要课题.最近,在孤立数方面取得了一些
进展,2000年,F.LUCA证明了Fermat数都是孤立数;2005年,乐茂华教授证明了2的方幂都是孤立数,用乐茂华教授的方法给出孤立数的一些新的结果:对于任意含有4w+1(w∈Z)型素因子的正整数n,设pn的任意一个4w+1(w∈Z)型素因子,则在n2p2n2p4n2p6n2里至少有一个是孤立数,因此可以证明孤立数在完全平方数里有正密度,另外也给出求解确定孤立数的方法.

关键词: 孤立数, 同余, 相亲数

Abstract: Perfect number, amicable number and anti-sociable numbers are important topics in number theory. Recently, advances have been made in anti-sociable numbers. In 2000, F.LUCA proved that Fermat number are anti-sociable numbers, and in 2005, M.H. LE proved all powers of 2 are anti-sociable numbers. We have used the method of M.H. LE to obtain some new results of the antisociable numbers. For every integer n containing prime divisors that are 1 mod 4, let pmod 4 be an arbitrary prime divisor of n. There is at least one anti-sociable number inn2, p2n2, p4n2, and p6n2. Therefore we can prove that anti-sociable numbers have positive density in perfect square numbers. We also give a method to find the exact anti-sociable numbers.

Key words: amicable number, congruence, anti-sociable number

中图分类号: